Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (6): 452-460    DOI: 10.11901/1005.3093.2018.506
ARTICLES Current Issue | Archive | Adv Search |
Influence of Microstructure Evolution on Superplastic Properties of Fine-grained Mg-Y-Nd Alloy
Genghua CAO,Zhenxing ZHENG(),Yixiong LIU,Min WANG,Weihua LI
School of Mechanical and Electronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510635, China
Cite this article: 

Genghua CAO,Zhenxing ZHENG,Yixiong LIU,Min WANG,Weihua LI. Influence of Microstructure Evolution on Superplastic Properties of Fine-grained Mg-Y-Nd Alloy. Chinese Journal of Materials Research, 2019, 33(6): 452-460.

Download:  HTML  PDF(41394KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Superplastic performance of the submerged friction stir processed Mg-Y-Nd alloy was assessed by initial strain rates in range of 2×10-2 to 4×10-4 s-1 at temperatures in range of 683 to 758 K, aiming to reveal the correlation of the microstructure evolution and the superplastic performance of the alloy. Results show that due to the fine-grained and stable microstructure, the alloy exhibits the maximum elongation of 967% by strain rate of 3×10-3 s-1 at 733 K, and the excellent high strain rate superplasticity of 900% by 2×10-2 s-1 at 758 K respectively. The average size of α-Mg grains and secondary phase particles remarkably increased when the alloy subjected to high temperature tensile tests for long time, as a result, the elongation of the alloy significantly decreased. Cavities easily formed at grain boundaries instead of the interface of secondary particles and matrix, which may be responsible to the good deformation compatibility between particles and matrix.

Key words:  metallic materials      Mg-Y-Nd alloy      friction stir processing      superplastic deformation      microstructure     
Received:  16 August 2018     
ZTFLH:  TG146.22  
Fund: Natural Science Foundation of Guangdong Province(No. 2017A030310630);Science and Technology Plan Projects of Guangdong Province(No.2017A070715012);Innovation Strong School Project of Guangdong Province(Nos. 2017KTSCX115);Innovation Strong School Project of Guangdong Province(Nos. 2015KTSCX084)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.506     OR     https://www.cjmr.org/EN/Y2019/V33/I6/452

Fig.1  Grip region, gauge region and fracture tip in fractured specimen
Fig.2  SEM image of cast specimen (a) and TEM image of SFSP specimen (b)
Fig.3  Appearance of SFSP specimens after tensile tests at different strain rates: (a) 2×10-2 s-1, (b) 3×10-3 s-1, (c) 4×10-4 s-1
Fig.4  OM images of grip region in fractured specimens at different test conditions (a, b, c) 683 K; (d, e, f) 708 K; (g, h, i) 733 K; (j, k, l) 758 K; (a, d, g, j) 2×10-2 s-1; (b, e, h, k) 3×10-3 s-1; (c, f, i, l) 4×10-4 s-1
Fig.5  SEM images of gauge region in SFSP specimens at different test conditions (a, b, c) 683 K; (d, e, f) 708 K; (g, h, i) 733 K; (j, k, l) 758 K; (a, d, g, j) 2×10-2 s-1; (b, e, h, k) 3×10-3 s-1; (c, f, i, l) 4×10-4 s-1
Fig.6  BSE images of gauge region in SFSP specimen at different test conditions (a, b, c) 683 K; (d, e, f) 708 K; (g, h, i) 733 K; (j, k, l) 758 K; (a, d, g, j) 2×10-2 s-1; (b, e, h, k) 3×10-3 s-1; (c, f, I, l) 4×10-4 s-1
Fig.7  Elongation of the SFSP specimens (a), average grain sizes in grip region (b), average grain sizes (c) and average particle sizes in gauge region (d) of fractured specimens at different test conditions
Fig.8  SEM images showing surface morphologies deformed at different test conditions (a, b, c) 683 K; (d, e, f) 708 K; (g, h, i) 733 K; (j, k, l) 758 K; (a, d, g, j) 2×10-2 s-1; (b, e, h, k) 3×10-3 s-1; (c, f, i, l) 4×10-4 s-1
Fig.9  Surface morphologies near the fracture tip deformed at 733 K and 4×10-4 s-1: (a) secondary electron micrograph; (b) back-scattered electron micrograph
[1] Kaibyshev R, Sakai T, Musin F, et al. Superplastic behavior of a 7055 aluminum alloy [J]. Scripta Mater., 2001, 45: 1373
[2] Langdon T G. Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement [J]. Acta Mater., 2013, 61: 7035
[3] Chen Z H, Liu J W, Chen D, et al. Deformation mechanisms, current status and development direction of superplastic magnesium alloys [J]. Chin. J. Nonferrous Met., 2008, 18: 193
[3] (陈振华, 刘俊伟, 陈 鼎等. 镁合金超塑性的变形机理、研究现状及发展趋势 [J]. 中国有色金属学报, 2008, 18: 193)
[4] Kandalam S, Sabat R K, Bibhanshu N, et al. Superplasticity in high temperature magnesium alloy WE43 [J]. Mater. Sci. Eng., 2017, 687A: 85
[5] Chen F F, Huang H J, Xue P, et al. Research progress on microstructure and mechanical properties of friction stir processed ultrafine-grained materials [J]. Chin. J. Mater. Res., 2018, 32(1): 1
[5] (陈菲菲, 黄宏军, 薛 鹏等. 搅拌摩擦加工超细晶材料的组织和力学性能研究进展 [J]. 材料研究学报, 2018, 32(1): 1)
[6] Hofmann D C, Vecchio K S. Submerged friction stir processing (SFSP): An improved method for creating ultra-fine-grained bulk materials [J]. Mater. Sci. Eng., 2005, 402A: 234
[7] Cao G H, Zhang D T, Luo X C, et al. Effect of aging treatment on mechanical properties and fracture behavior of friction stir processed Mg-Y-Nd alloy [J]. J. Mater. Sci., 2016, 51: 7571
[8] Chai F, Zhang D T, Zhang W W, et al. Microstructure evolution during high strain rate tensile deformation of a fine-grained AZ91 magnesium alloy [J]. Mater. Sci. Eng., 2014, 590A: 80
[9] Wang X, Chen D, Xiao D, et al. Superplasticity of Mg-Al-Ca alloys with high Ca/Al ratio [J]. Mater. Rev., 2016, 30(10): 71
[9] (王 新, 陈 鼎, 肖 迪等. 高Ca/Al比的Mg-Al-Ca合金的超塑性 [J]. 材料导报, 2016, 30(10): 71)
[10] Kim W J, Lee K E, Park J P, et al. Microstructure and superplasticity of Mg-Al-Ca electromagnetic casting alloys after hot extrusion [J]. Mater. Sci. Eng., 2008, 494A: 391
[11] Frost H J, Ashby M F. Deformation-Mechanism Maps [M]. Oxford, UK: Pergamon Press, 1982
[12] Kim W J, Moon I K, Han S H. Ultrafine-grained Mg-Zn-Zr alloy with high strength and high-strain-rate superplasticity [J]. Mater. Sci. Eng., 2012, 538A: 374
[13] Watanabe H, Mukai T, Ishikawa K, et al. Realization of high strain rate superplasticity at low temperatures in a Mg-Zn-Zr alloy [J]. Mater. Sci. Eng., 2001, 307A: 119
[14] Barnes A J. Superplastic forming 40 years and still growing [J]. J. Mater. Eng. Perform., 2007, 16: 440
[15] Figueiredo R B, Langdon T G. Strategies for achieving high strain rate superplasticity in magnesium alloys processed by equal-channel angular pressing [J]. Scr. Mater., 2009, 61: 84
[16] Luo Z A, Xie G M, Ma Z Y, et al. Effect of yttrium addition on microstructural characteristics and superplastic behavior of friction stir processed ZK60 alloy [J]. J. Mater. Sci. Technol., 2013, 29: 1116
[17] Tang W N, Chen R S, Han E H. Superplastic behaviors of a Mg-Zn-Y-Zr alloy processed by extrusion and equal channel angular extrusion [J]. J. Alloys Compd., 2009, 477: 636
[18] Yang Q, Xiao B L, Zhang Q, et al. Exceptional high-strain-rate superplasticity in Mg-Gd-Y-Zn-Zr alloy with long-period stacking ordered phase [J]. Scr. Mater., 2013, 69: 801
[19] Li L, Zhang X M, Deng Y L, et al. Effect of second phase on superplastic deformation of extruded rod of Mg-Gd-Y-Zr alloy [J]. Chin. J. Nonferrous Met., 2010, 20: 10
[19] (李 理, 张新明, 邓运来等. 第二相在Mg-Gd-Y-Zr合金挤压棒超塑性变形中的作用 [J]. 中国有色金属学报, 2010, 20: 10)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!