Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (6): 443-451    DOI: 10.11901/1005.3093.2018.474
ARTICLES Current Issue | Archive | Adv Search |
Microstructure Evolution of α''-Phase and α'-Phase and Microhardness of TC11 Titanium Alloy
Yingdong ZHANG1,2(),Geping LI1,Chengze LIU1,2,Fusen YUAN1,2,Fuzhou HAN1,2,Muhanmmad Ali1,2,Hengfei GU1,3
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, 96 JinZhai Road, Baohe District, Hefei, Anhui 230026, China
3. University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
Cite this article: 

Yingdong ZHANG,Geping LI,Chengze LIU,Fusen YUAN,Fuzhou HAN,Muhanmmad Ali,Hengfei GU. Microstructure Evolution of α''-Phase and α'-Phase and Microhardness of TC11 Titanium Alloy. Chinese Journal of Materials Research, 2019, 33(6): 443-451.

Download:  HTML  PDF(8864KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of solution treatment temperature (STT) (ranging from 935°C to 995°C) on the microstructure evolution of α"-phase, α'-phase and microhardness of TC11 titanium alloy were investigated systematically by means of optical microscope, electron microscope with energy dispersive spectroscope, X-ray diffractometer and microhardness tester. Results show that the crystal structure of α"-phase gradually correspond to the crystal structure of the α' phase, and the phase composition of TC11 alloy changes with increasing STT (α+α", α+α"+α', α+α', α'). Microhardness of the alloy solution treated in the temperature range from 935~985°C increased with the solution temperature, whereas the microhardness reduced for further increase of solution temperature up to the range of 985~995°C. Microstructural features resulting from different STTs were correlated with corresponding microhardness values. With the increment of STT the microhardness increased, because the thickness and spacing of α'-lamellae increased slowly and the β-transformed structure grew up slowly. Besides, due to phase transition strengthening (PTS) the α"-phase and α'-phase are precipitated in the β-transformed structure, and the α'-lamellae contents in the β-transformed microstructure increased, eventually reaching a maximum at 985°C. Above 985°C the microhardness decreased, because the thickness and spacing of α'-lamellae increased significantly and the β-transformed structure became coarser at the expense of α'-phase and α"-phase contents.

Key words:  metallic materials      TC11 titanium alloy      solution treatment      microstructure      microhardness     
Received:  25 July 2018     
ZTFLH:  TG146.2  

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.474     OR     https://www.cjmr.org/EN/Y2019/V33/I6/443

The number of sampleSolution temperature/℃Holding time/hCooling
19351WQ
29551WQ
39651WQ
49751WQ
59801WQ
69851WQ
79901WQ
89951WQ
Table 1  Solution treatment of TC11 titanium alloy
Fig.1  Microstructure of TC11 titanium alloy before solution heat treatment
Fig.2  Microstructure of TC11 titanium alloy solution treated at different temperature (a) 935℃, (b) 955℃, (c) 965℃, (d) 975℃, (e) 980℃, (f) 985℃, (g) 990℃, (h) 995℃
Fig.3  Volume fraction (a) and average diameter (b) of primary α phase in the TC11 titanium alloy solution treated at different temperature
Fig.4  Microstructure of β-transformed structure under SEM in sample solution treated at different temperature (a) 935℃, (b) 955℃, (c) 965℃, (d) 975℃, (e) 980℃, (f) 985℃, (g) 990℃, (h) 995℃
Fig.5  XRD patterns of TC11 titanium alloy solution treated at different temperature (a) 935℃, (b) 955℃, (c) 965℃, (d) 975℃, (e) 980℃, (f) 985℃, (g) 990℃, (h) 995℃
Fig.6  Vickers hardness of β - transformed structure in sample solution treated at different tempertation
Fig.8  Variabilities of lattice parameters of α" phase in sample solution treated at different tempertation
Fig.7  Variabilities of Mo and Al contents in β-transformed structure in sample solution treated at different tempertation
Fig.9  Relationship between the α" parameter ratio b/a and solution temperature
Fig.10  Relationship between the α" parameter ratio c/a and solution temperature
Fig.11  Crystal structures of the β-phase, α"-phase and α'-phase (a) a-,b- and c-axes of β-phase structure correspond to the [001],[1ˉ10]and [110] lattice vectors of the original bcc structure, respectively (b)-(g) a-,b- and c-axes of α"-phase structure (935~985℃ solution treatment) correspond to the [1ˉ00], [010] and [001] lattice vectors of the original orthorhombic structure,respectively (d) The a-,b- and c-axes of α'-phase structure correspond to the [1ˉ1ˉ0], [110] and [001] lattice vectors of the original hcp structure, respectively
Fig.12  Number of the α' - lamellae in sample solution treated at different tempertation
Fig.13  Thickness (a) and the spacing (b) of the α' - lamellae in sample solution treated at different tempertation
[1] Shang S, Shen J, Wang X, et al. Transformation textures in an α+β, titanium alloy thin sheet [J]. Materials Science & Engineering A, 2002, 326(2): 249
[2] Lineberger L. Titanium aerospace alloy [J]. Advanced Materials & Processes, 1998, 153(5): 45
[3] Boyer R, Welsch G, Collings E W. Materials Properties Handbook: Titanium Alloys [M]. Materials properties handbook: titanium alloys. ASM International, 1994
[4] Peng P W, Ou K L, Chao C Y, et al. Research of microstructure and mechanical behavior on duplex (α+β) Ti-4.8Al-2.5Mo-1.4V alloy [J]. Journal of Alloys & Compounds, 2010, 490(1-2): 661
[5] Yang H, Yao Z, Gao J, et al. Influence of gradient heat treatment on microstructure and microhardness in weld seam of Ti 3 Al/TC11 dual alloys [J]. Rare Metal Materials & Engineering, 2010, 39(1): 22
[6] Tan L, Yao Z, Zhou W, et al. Microstructure and properties of electron beam welded joint of Ti-22Al-25Nb/TC11 [J]. Aerospace Science & Technology, 2010, 14(5): 302
[7] Zhang X Y, Li M Q, Li H, et al. Deformation behavior in isothermal compression of the TC11 titanium alloy [J]. Materials & Design, 2010, 31(6): 2851
[8] Lütjering G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys [J]. Materials Science and Engineering: A, 1998, 243(1): 32
[9] Poondla N, Srivatsan T S, Patnaik A, et al. A study of the microstructure and hardness of two titanium alloys: Commercially pure and Ti-6Al-4V [J]. Journal of Alloys & Compounds, 2009, 486(1-2): 162
[10] Mcquillan M K. Phase Transformations in titanium and its alloys [J]. Metallurgical Reviews, 2013, 8(1): 41
[11] Hao Y L, Yang R, Niinomi M, et al. Young's modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr in relation to α" martensite [J]. Metallurgical & Materials Transactions A, 2002, 33(10): 3137
[12] Lin D J, Lin J H, Ju C P. Structure and properties of Ti-7.5Mo-xFe alloys [J]. Biomaterials, 2002, 23(8): 1723
[13] Zhang X Y, Zhao Y Q, Bai C G. Titanium Alloys and their Applications [M]. Chemical Industry Press, 2005
[13] 张喜燕, 赵永庆, 白晨光. 钛合金及应用 [M]. 化学工业出版社, 2005
[14] Yang R, Saunders N, Leake J A, et al. Equilibria and microstructural evolution in the β/β'/γ' region of the Ni-Al-Ti system: modelling and experiment [J]. Acta Metallurgica Et Materialia, 1992, 40(7): 1553
[15] Zhang Y, Liu Z Y, Zhao Z S, et al. Preparation of pure a"-phase titanium alloys with low moduli via high pressure solution treatment [J]. Journal of Alloys & Compounds, 2017, 695(1-2): 45
[16] Peng P W, Ou K L, Chao C Y, et al. Research of microstructure and mechanical behavior on duplex (α+β) Ti-4.8Al-2.5Mo-1.4V alloy [J]. Journal of Alloys & Compounds, 2010, 490(1-2): 661
[17] Chung W C, Tsat L W, Chen C. Microstructure and notch properties of heat-treated Ti-4.5 Al-3V-2Mo-2Fe laser welds [J]. Materials transactions, 2009, 50(3): 544
[18] Esmaily M, Mortazavi S N, Todehfalah P, et al. Microstructural characterization and formation of α' martensite phase in Ti-6Al-4V alloy butt joints produced by friction stir and gas tungsten arc welding processes [J]. Materials & Design, 2013, 47: 143
[19] Rechtien J J, Nelson R D. Phase transformations in uranium, plutonium, and neptunium [J]. Metallurgical and Materials Transactions B, 1973, 4(12): 2755
[20] Huang X B. Electron Microscopy Analysis of Microstructure of Materials [M]. Beijing: Metallurgical Industry Press, 2008
[20] 黄孝瑛. 材料微观结构的电子显微学分析 [M]. 北京: 冶金工业出版社, 2008
[21] Inamura T., Kim J. I., Kim H. Y., et al. Composition dependent crystallography of α"-martensite in Ti-Nb-based β-titanium alloy [J]. Philosophical Magazine, 2007, 87(23): 3325
[22] Dobromyslov A V, Elkin V A. The orthorhombic α"-phase in binary titanium-base alloys with d-metals of V-VIII groups [J]. Materials Science & Engineering A, 2006, s438-440: 324
[23] Zhang F, Yu Z, Xiong C, et al. Martensitic transformations and the shape memory effect in Ti-Zr-Nb-Al high-temperature shape memory alloys [J]. Materials Science & Engineering A, 2017, 679: 14
[24] Kharia K K, Rack H J. Martensitic phase transformations in IMI 550 (Ti-4Al-4Mo-2Sn-0.5 Si) [J]. Metallurgical & Materials Transactions A, 2001, 32(13): 671
[25] Yang H, Yao Z, Gao J, et al. Influence of gradient heat treatment on microstructure and microhardness in weld seam of Ti 3 Al/TC11 dual alloys [J]. Rare Metal Materials & Engineering, 2010, 39(1): 22
[26] Wang Y H, Kou H, Chang H, et al. Influence of solution temperature on phase transformation of TC21 alloy [J]. Materials Science & Engineering A, 2009, 508(1-2): 76
[27] Wang X D, Lou H B, Stahl K, et al. Tensile behavior of orthorhombic α"-titanium alloy studied by in situ X-ray diffraction [J]. Materials Science & Engineering A, 2010, 527(24): 6596
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!