Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (2): 145-154    DOI: 10.11901/1005.3093.2018.387
Current Issue | Archive | Adv Search |
Preparation and Photocatalytic Properties of Direct Z-Scheme Hexagonal/Cubic ZnIn2S4 Composite Catalysts
Shunsheng CHEN1,2,Shaozhen LI1,Xiaojing LUO3,Guohong WANG4()
1. School of Mathematics and Physics, Hubei Polytechnic University, Huangshi 435003, China
2. Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Faculty of Physics & Electronic Science, Hubei University, Wuhan 430062, China
3. College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 201300, China
4. Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Normal University, Huangshi 435002, China
Cite this article: 

Shunsheng CHEN,Shaozhen LI,Xiaojing LUO,Guohong WANG. Preparation and Photocatalytic Properties of Direct Z-Scheme Hexagonal/Cubic ZnIn2S4 Composite Catalysts. Chinese Journal of Materials Research, 2019, 33(2): 145-154.

Download:  HTML  PDF(11874KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Photocatalysts of cubic ZnIn2S4 and hexagonal ZnIn2S4 as well as a series of Cubic ZnIn2S4/hexagonal ZnIn2S4 composite with different molar ratios were synthesized via hydrothermal method. The crystal structure, microstructure and optical absorption property of the as-synthesized photocatalysts were characterized by means of X-ray diffractometer, scanning electron microscopy, transmission electron microscopy, photoluminescence spectrometer, Brunauer-Emmett-TeIler analysis and UV-visible diffuse reflectance spectroscopy. The photocatalytic activities of the prepared photocatalysts were evaluated through photocatalytic degradation of methyl orange under visible-light irradiation. Results show that all the composite photocatalysts have much better photocatalytic activity than that of the catalysts of cubic ZnIn2S4 and hexagonal ZnIn2S4 as well as the mechanically mixed ZnIn2S4 of the above two pure catalysts; Among others, the composite with more ratio 3:7 for cubic ZnIn2S4 to hexagonal ZnIn2S4 presents the highest photocatalytic activity with degradation efficiency for methyl orange up to 95.2% under visible-light irradiation for 30 minutes. This property can be attributed to the much larger specific surface areas and a direct Z-scheme photocatalytic process due to the close contact of cubic ZnIn2S4 and hexagonal ZnIn2S4 produced by the hydrothermal synthesis process.

Key words:  inorganic non-metallic materials      visible-light photocatalytic degradation      hydrothermal method      direct Z-scheme composite photocatalyst      ZnIn2S4 composite catalysts     
Received:  12 June 2018     
ZTFLH:  O643.36  
Fund: National Natural Science Foundation of China(11504227);National Natural Science Foundation of China(51302074);National Natural Science Foundation of China(11374147)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.387     OR     https://www.cjmr.org/EN/Y2019/V33/I2/145

No.NameMass/gMol ratio
In(NO3)3·4.5H2OZn(NO3)2·6H2OZnCl2CH3CSNH2Cubic: hexagonal
1C0.7640.2980.61:0
27C-3H0.7640.2090.0410.67:3
35C-5H0.7640.150.0680.65:5
43C-7H0.7640.0890.0950.63:7
5H0.7640.1360.60:1
Table 1  Mass of raw materials for samples les C, 7C-3H, 5C-5H, 3C-7H and H
Fig.1  XRD patterns of as-synthesized samples
Fig.2  EDS spectrums of samples hexagonal ZnIn2S4 (a) and cubic ZnIn2S4 (b)
Fig.3  UV-visible diffuse re?ectance spectra (a) and the band fitting curves according to the relationship of αhυ-hυ (b) of as-synthesized samples
Fig.4  UV-visible absorption spectrum changes of the MO degradation over samples C, 7C-3H, 5C-5H, 3C-7H, H and 3C-7H-H
Fig.5  Photocatalytic activity curves of as- synthesized samples under visible-light irradiation
Fig.6  SEM images of chosen samples C (a), H (b) and 3C-7H (c)
Fig.7  TEM images (a, b) and HRTEM images (c) of sample 3C-7H
Fig.8  N2 adsorption-desorption isotherms and the pore size distribution curves (inset) of samples C, 5C-5H, 3C-7H
Sample

Specific surface area

/m2·g-1

Pore

volume

/cm3·g-1

Average pore size

/nm

Bandgap

/eV

C96.70.1797.412.27
5C-5H101.50.2017.912.33
3C-7H145.80.39310.772.34
Table 2  Data of BET for samples C, 5C-5H and 3C-7H.
Fig.9  PL spectra of samples C (a),H (b) and 3C-7H (c) with excitation wavelength of 400 nm
Fig.10  Cyclic measuring curves of samples 3C-7H
Fig.11  Active species trapping experiments of sample 3C-7H under visible-light irradiation
Fig.12  Schematic diagram of mechanism of photocatalytic degradation MO for sample 3C-7H
[1] Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions [J]. Bull. Environ. Contaminat. Toxicol., 1976, 16: 697
[2] Zhang C, Wu Z J, Liu J J, et al. Preparation of MoS2/TiO2 composite catalyst and its photocatalytic hydrogen production activity under UV irradiation [J]. Acta Phys. Chim. Sin., 2017, 33: 1492
[2] (张 驰, 吴志娇, 刘建军等. MoS2/TiO2复合催化剂的制备及其在紫外光下的光催化制氢活性 [J]. 物理化学学报, 2017, 33: 1492
[3] Zhang J F, Zhou P, Liu J J, et al. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2 [J]. Phys. Chem. Chem. Phys., 2014, 16: 20382
[4] Zhang J, Wu W C, Yan S, et al. Enhanced photocatalytic activity for the degradation of rhodamine B by TiO2 modified with Gd2O3 calcined at high temperature [J]. Appl. Surf. Sci., 2015, 344: 249
[5] Meng A Y, Zhang J, Xu D F, et al. Enhanced photocatalytic H2-production activity of anatase TiO2 nanosheet by selectively depositing dual-cocatalysts on {101} and {001} facets [J]. Appl. Catal., 2016, 198B: 286
[6] Papailias I, Todorova N, Giannakopoulou T, et al. Photocatalytic activity of modified g-C3N4/TiO2 nanocomposites for NOx removal [J]. Catal. Today, 2017, 280: 37
[7] Ren H T, Yang Q. Fabrication of Ag2O/TiO2 with enhanced photocatalytic performances for dye pollutants degradation by a pH-induced method [J]. Appl. Surf. Sci., 2017, 396: 530
[8] Ma L N, Wang G H, Jiang C J, et al. Synthesis of core-shell TiO2@g-C3N4 hollow microspheres for efficient photocatalytic degradation of rhodamine B under visible light [J]. Appl. Surf. Sci., 2018, 430: 263
[9] Chen S S, Li S Z, Xiong L B, et al. In-situ growth of ZnIn2S4 decorated on electrospun TiO2 nanofibers with enhanced visible-light photocatalytic activity [J]. Chem. Phys. Lett., 2018, 706: 68
[10] Low J X, Cheng B, Yu J G. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review [J]. Appl. Surf. Sci., 2017, 392: 658
[11] Ouyang W X, Teng F, Fang X S. High performance BiOCl nano-sheets/TiO2 nanotube arrays heterojunction UV photodetector: the influences of self-induced inner electric fields in the BiOCl Nanosheets [J]. Adv. Funct. Mater., 2018, 28: 1707178
[12] Zhong J B, Li J Z, Zeng J, et al. Enhanced photocatalytic activity of In2O3-decorated TiO2 [J]. Appl. Phys., 2014, 115A: 1231
[13] Zalfani M, Hu Z Y, Yu W B, et al. BiVO4/3DOM TiO2 nanocomposites: effect of BiVO4 as highly efficient visible light sensitizer for highly improved visible light photocatalytic activity in the degradation of dye pollutants [J]. Appl. Catal., 2017, 205: 121
[14] Li L L, Cheng B, Wang Y X, et al. Enhanced photocatalytic H2-production activity of bicomponent NiO/TiO2 composite nanofibers [J]. J. Colloid Interf. Sci., 2015, 449: 115
[15] Xiang Q J, Yu J G, Jaroniec M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles [J]. J. Am. Chem. Soc., 2012, 134: 6575
[16] Gao H Z, Wang H E, Jin Y L, et al. Controllable fabrication of immobilized ternary CdS/Pt-TiO2 heteronanostructures toward high-performance visible-light driven photocatalysis [J]. Phys. Chem. Chem. Phys., 2015, 17: 17755
[17] Ai G J, Mo R, Chen Q, et al. TiO2/Bi2S3 core-shell nanowire arrays for photoelectrochemical hydrogen generation [J]. RSC Adv., 2015, 5: 13544
[18] Zhang Z Y, Liu K C, Feng Z Q, et al. Hierarchical sheet-on-sheet ZnIn2S4/g-C3N4 heterostructure with highly efficient photocatalytic H2 production based on photoinduced interfacial charge transfer [J]. Sci. Rep., 2016, 6: 19221
[19] Zhang D Y, Zhang Y H, Luo Y S, et al. High-performance asymmetrical supercapacitor composed of rGO-enveloped nickel phosphite hollow spheres and N/S co-doped rGO aerogel [J]. Nano Res., 2018, 11: 1651
[20] Wang P, Wang J, Wang X F, et al. One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity [J]. Appl. Catal., 2013, 132-133B: 452
[21] Romeo N, Dallaturca A, Braglia R, et al. Charge storage in ZnIn2S4 single crystals [J]. Appl. Phys. Lett., 1973, 2: 21
[22] Mahadik M A, Shinde P S, Cho M, et al. Metal oxide top layer as an interfacial promoter on a ZnIn2S4/TiO2 heterostructure photoanode for enhanced photoelectrochemical performance [J]. Appl. Catal., 2016, 184B: 337
[23] Liu H, Jin Z T, Xu Z Z, et al. Fabrication of ZnIn2S4-g-C3N4 sheet-on-sheet nanocomposites for efficient visible-light photocatalytic H2-evolution and degradation of organic pollutants [J]. RSC Adv., 2015, 5: 97951
[24] Parmeggiani C, Cardona F. Transition metal based catalysts in the aerobic oxidation of alcohols [J]. Green Chem., 2012, 14: 547
[25] Yuan Y J, Tu J R, Ye Z J, et al. MoS2-graphene/ZnIn2S4 hierarchical microarchitectures with an electron transport bridge between light-harvesting semiconductor and cocatalyst: A highly efficient photocatalyst for solar hydrogen generation [J]. Appl. Catal., 2016, 188: 13
[26] Qiu P X, Yao J H, Chen H, et al. Enhanced visible-light photocatalytic decomposition of 2,4-dichlorophenoxyacetic acid over ZnIn2S4/g-C3N4 photocatalyst [J]. J. Hazard. Mater., 2016, 317: 158
[27] Chen Z X, Xu J J, Ren Z Y, et al. Low temperature synthesis of ZnIn2S4 microspheres as a visible light photocatalyst for selective oxidation [J]. Catal. Commun., 2013, 41: 83
[28] Chai B, Peng T Y, Zeng P, et al. Preparation of a MWCNTs/ZnIn2S4 composite and its enhanced photocatalytic hydrogen production under visible-light irradiation [J]. Dalton Trans., 2012, 41: 1179
[29] Shang L, Zhou C, Bian T, et al. Facile synthesis of hierarchical ZnIn2S4 submicrospheres composed of ultrathin mesoporous nanosheets as a highly efficient visible-light-driven photocatalyst for H2 production [J]. J. Mater. Chem., 2013, 1A: 4552
[30] Chai B, Peng T Y, Zeng P, et al. Template-free hydrothermal synthesis of ZnIn2S4 floriated microsphere as an efficient photocatalyst for H2 production under visible-light irradiation [J]. J. Phys. Chem., 2011, 115C: 6149
[31] Shen J, Zai J T, Yuan Y P, et al. 3D hierarchical ZnIn2S4: the preparation and photocatalytic properties on water splitting [J]. Int. J. Hydrogen Energy, 2012, 37: 16986
[32] Gou X L, Cheng F Y, Shi Y H, et al. Shape-controlled synthesis of ternary chalcogenide ZnIn2S4 and CuIn (S, Se)2 nano-/microstructures via facile solution route [J]. J. Am. Chem. Soc., 2006, 128: 7222
[33] Li Y X, Wang J X, Peng S Q, et al. Photocatalytic hydrogen generation in the presence of glucose over ZnS-coated ZnIn2S4 under visible light irradiation [J]. Int. J. Hydrogen Energy, 2010, 35: 7116
[34] Shen S H, Zhao L, Guo L J. ZnmIn2S3+m (m=1-5, integer): a new series of visible-light-driven photocatalysts for splitting water to hydrogen [J]. Int. J. Hydrogen Energy, 2010, 35: 10148
[35] Song K L, Zhu R S, Tian F, et al. Effects of indium contents on photocatalytic performance of ZnIn2S4 for hydrogen evolution under visible light [J]. J. Solid State Chem., 2015, 232: 138
[36] Su L, Ye X J, Meng S G, et al. Effect of different solvent on the photocatalytic activity of ZnIn2S4 for selective oxidation of aromatic alcohols to aromatic aldehydes under visible light irradiation [J]. Appl. Surf. Sci., 2016, 384: 161
[37] Chen Y J, Hu S W, Liu W J, et al. Controlled syntheses of cubic and hexagonal ZnIn2S4 nanostructures with different visible-light photocatalytic performance [J]. Dalton Trans., 2011, 40: 2607
[38] Peng S Q, Dan M, Guo F J, et al. Template synthesis of ZnIn2S4 for enhanced photocatalytic H2 evolution using triethanolamine as electron donor [J]. Colloids Surf., 2016, 504: 18
[39] Jo W K, Natarajan T S. Fabrication and efficient visible light photocatalytic properties of novel zinc indium sulfide (ZnIn2S4)-graphitic carbon nitride (g-C3N4)/bismuth vanadate (BiVO4) nanorod-based ternary nanocomposites with enhanced charge separation via Z-scheme transfer [J]. J. Colloid Interface Sci., 2016, 482: 58
[40] Adhikari S, Charanpahari A V, Madras G. Solar-light-driven improved photocatalytic performance of hierarchical ZnIn2S4 architectures [J]. ACS Omega, 2017, 2: 6926
[41] Yang W, Chen D Z, Quan H Y, et al. Enhanced photocatalytic properties of ZnFe2O4 doped ZnIn2S4 Heterostructure under visible light irradiation [J]. RSC Adv., 2016, 6: 83012
[42] Chen Y J, He J, Li J J, et al. Hydrilla derived ZnIn2S4 photocatalyst with hexagonal-cubic phase junctions: A bio-inspired approach for H2 evolution [J]. Catal. Commun., 2016, 87: 1
[43] Xu F Y, Xiao W, Cheng B, et al. Direct Z-scheme anatase/rutile bi-phase nanocomposite TiO2 nanofiber photocatalyst with enhanced photocatalytic H2-production activity [J]. Intern. J. Hydrogen Energy, 2014, 39: 15394
[44] Li K, Han M, Chen R, et al. Hexagonal@cubic CdS core@shell nanorod photocatalyst for highly active production of H2 with unprecedented stability [J]. Adv. Mater., 2016, 28: 8906
[45] Wang X, Xu Q, Li M R, et al. Photocatalytic overall water splitting promoted by an αβ phase junction on Ga2O3 [J]. Angew. Chem., Int. Ed. Engl., 2012, 51: 13089
[46] Wang J G, Chen Y J, Zhou W, et al. Cubic quantum dot/hexagonal microsphere ZnIn2S4 heterophase junctions for exceptional visible-light-driven photocatalytic H2 evolution [J]. J. Mater. Chem., 2017, 5A: 8451
[47] Tian F, Zhu R S, Song K L, et al. The effects of amount of La on the photocatalytic performance of ZnIn2S4 for hydrogen generation under visible light [J]. Int. J. Hydrogen Energy, 2015, 40: 2141
[48] Hou J G, Yang C, Cheng H J, et al. Ternary 3D architectures of CdS QDs/graphene/ZnIn2S4 heterostructures for efficient photocatalytic H2 production [J]. Phys. Chem. Chem. Phys., 2013, 15: 15660
[49] Fan B, Chen Z H, Liu Q, et al. One-pot hydrothermal synthesis of Ni-doped ZnIn2S4 nanostructured film photoelectrodes with enhanced photoelectrochemical performance [J]. Appl. Surf. Sci., 2016, 370: 252
[50] Chen Z X, Li D Z, Zhang W J, et al. Photocatalytic degradation of dyes by ZnIn2S4 microspheres under visible light irradiation [J]. J. Phys. Chem., 2009, 113C: 4433
[51] Shi W L, Lv H C, Yuan S L, et al. Synergetic effect of carbon dots as co-catalyst for enhanced photocatalytic performance of methyl orange on ZnIn2S4 microspheres [J]. Sep. Purif. Technol., 2017, 174: 282
[52] Liu T T, Wang L, Lu X, et al. Comparative study of the photocatalytic performance for the degradation of different dyes by ZnIn2S4: adsorption, active species, and pathways [J]. RSC Adv., 2017, 7: 12292
[53] Cui L F, Ding X, Wang Y G, et al. Facile preparation of Z-scheme WO3/g-C3N4 composite photocatalyst with enhanced photocatalytic performance under visible light [J]. Appl. Surf. Sci., 2017, 391: 202
[54] Lu D, Zhang G K, Wen Z. Visible-light-driven g-C3N4/Ti3+-TiO2 photocatalyst Co-exposed {001} and {101} facets and its enhanced photocatalytic activities for organic pollutant degradation and Cr (VI) reduction [J]. Appl. Surf. Sci., 2015, 358: 223
[55] Liu Q Q, Fan C Y, Tang H, et al. One-pot synthesis of g-C3N4/V2O5 composites for visible light-driven photocatalytic activity [J]. Appl. Surf. Sci., 2015, 358: 188
[56] Chen Y J, Huang R K, Chen D Q, et al. Exploring the different photocatalytic performance for dye degradations over hexagonal ZnIn2S4 microspheres and cubic ZnIn2S4 nanoparticles [J]. ACS Appl. Mater. Interfaces, 2012, 4: 2273
[57] Li P, Li H J, Tu W G, et al. Photocatalytic application of Z-type system [J]. Acta Phys. Sin., 2015, 64: 094209
[57] (李 平, 李海金, 涂文广等. Z型光催化材料的研究进展 [J]. 物理学报, 2015, 64: 094209
[58] Zhou P, Yu J G, Jaroniec M. All-solid-state Z-scheme photocatalytic systems [J]. Adv. Mater., 2014, 26: 4920
[59] Zhang L P, Wang G H, Xiong Z Z, et al. Fabrication of flower-like direct Z-scheme β-Bi2O3/g-C3N4 photocatalyst with enhanced visible light photoactivity for rhodamine B degradation [J]. Appl. Surf. Sci., 2018, 436: 162
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] LIU Yanyun, LIU Yutao, LI Wanxi. Preparation and Electrochemical Performance of rGO/PANI/MnO2 Ternary Composites[J]. 材料研究学报, 2022, 36(7): 552-560.
No Suggested Reading articles found!