Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (2): 155-160    DOI: 10.11901/1005.3093.2018.373
Current Issue | Archive | Adv Search |
Preparation and Property of SiBN Ternary Ceramic Fibers Prepared by Polyborosilazane-Derived Method
Yongjie CUI,Yong LIU(),Shuai PENG,Keqing HAN,Muhuo YU
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
Cite this article: 

Yongjie CUI,Yong LIU,Shuai PENG,Keqing HAN,Muhuo YU. Preparation and Property of SiBN Ternary Ceramic Fibers Prepared by Polyborosilazane-Derived Method. Chinese Journal of Materials Research, 2019, 33(2): 155-160.

Download:  HTML  PDF(3597KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Polyborosiliazne precursor was synthesized via multi-stage polymerization process with HSiCl3, Me6Si2NH, BCl3 and CH3NH2 as raw materials. Then SiBN ceramic fibers were obtained by melt spinning, curing and pyrolysis of the as-synthesized polyborosilazane precursor. The chemical structure, high temperature thermal stability, dielectric property and mechanical property of the polyborosilazane and its pyrolysis products were investigated by FT-IR, NMR, XRD, TEM and TGA. FT-IR and NMR. Results show that the polyborosilazane precursors prepared at different temperatures exhibited similar chemical structures, namely, containing Si-N, B-N and N-CH3 bonds. The obtained SiBN ceramic fibers remained amorphous structure with 14 μm in diameter and 0.91 GPa in tensile strength after heat treatment at 1400oC. The SiBN ceramic fibers have excellent thermal stability with only 1.5% mass loss in the temperature range from room temperature to 1400oC. The dielectric constant and dielectric loss loss tangent magnitude of SiBN ceramic fibers are 2.6~2.8 and 10-2 at 1100oC, respectively.

Key words:  inorganic nonmetallic materials      polyborosilazane      pyrolysis      SiBN ceramic fiber      thermal stability      dielectric property     
Received:  06 June 2018     
ZTFLH:  TQ343  
Fund: National Natural Science Foundation of China(51703025)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.373     OR     https://www.cjmr.org/EN/Y2019/V33/I2/155

Fig.1  FT-IR spectra of PBSZ synthesized at different polymerization temperature
Fig.2  13C-MAS NMR spectra of PBSZ prepared at different polymerization temperature
Fig.3  29Si-NMR spectra of PBSZ prepared at different polymerization temperature
Fig.4  11B-NMR spectra of PBSZ prepared at different polymerization temperature
Fig.5  Preparation process of PBSZ precursor
Fig.6  XRD patterns of SiBN ceramic fibers pyrolyzed at different temperature
Fig.7  TEM image of SiBN ceramic fibers pyrolyzed at 1400℃
Fig.8  TGA curve of SiBN ceramic fibers (performed in nitrogen)
Fig.9  Dielectric constant and loss of SiBN ceramics fibers with different pyrolysis temperature
Sample

Strength

/cN

Elongation

/%

Diameter

/μm

Tensile strength

/GPa

PBSZ green fibers6.915.1200.22
Cured fibers8.794.2190.31
Pyrolyzed fibers in 1100℃13.391.9140.87
Pyrolyzed fibers in 1400℃14.011.1140.91
Table 1  Mechanical property of PBSZ green fibers, cured fibers and pyrolyzed fibers
[1] Luan X G, Chang S, Riedel R, et al. An air stable high temperature adhesive from modified SiBCN precursor synthesized via polymer-derived-ceramic route [J]. Ceram. Int., 2018, 44: 8476
[2] Hannemann A, Sch?n J C, Jansen M, et al. Nonequilibrium dynamics in amorphous Si3B3N7 [J]. J. Phys. Chem., 2005, 109B: 11770
[3] Ji X Y, Wang S S, Shao C W, et al. High-temperature corrosion behavior of SiBCN fibers for aerospace applications [J]. ACS Appl. Mater. Interfaces, 2018, 10: 19712
[4] Tang Y, Wang J, Li X D, et al. Performance of polyborosilazane and SiBNC ceramics thereof [J]. Chin. J. Mater. Res., 2008, 22: 291
[4] (唐 云, 王 军, 李效东等. 聚硼硅氮烷先驱体的合成及其目标陶瓷SiBNC的性能 [J]. 材料研究学报, 2008, 22: 291
[5] Liu Y, Chen K Z, Dong F B, et al. Effects of hydrolysis of precursor on the structures and properties of polymer-derived SiBN ceramic fibers [J]. Ceram. Int., 2018, 44: 10199
[6] Van Wüllen L, Jansen M. The role of carbon in the nitridic high performance ceramics in the system Si-B-N-C [J]. Solid State Nucl. Magn. Reson., 2005, 27: 90
[7] J?schke T, Jansen M. Synthesis and characterization of new amorphous Si/B/N/C ceramics with increased carbon content through single-source precursors [J]. C. R. Chim., 2004, 7: 471
[8] J?schke T, Jansen M. Improved durability of Si/B/N/C random inorganic networks [J]. J. Eur. Ceram. Soc., 2005, 25: 211
[9] Tang Y, Wang J, Li X D, et al. Polymer-derived SiBN fiber for high-temperature structural/functional applications [J]. Chem. Eur. J., 2010, 16: 6458
[10] Yuan J, Han K Q, Zhao X, et al. Melt spinning process and characterization of precursors for SiBN(C) ceramic fiber [J]. Chin. Syn. Fiber Ind., 2011, 34: 1
[10] (袁 佳, 韩克清, 赵 曦等. SiBN(C)陶瓷纤维先驱体的表征及熔融纺丝 [J]. 合成纤维工业, 2011, 34: 1
[11] Colombo P, Mera G, Riedel R, et al. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics [J]. J. Am. Ceram. Soc., 2010, 93: 1805
[12] Ge K K, Ye L, Han W J, et al. Pyrolysis of polyborosilazane and its conversion into SiBN ceramic [J]. Adv. Appl. Ceram., 2014, 113:367
[13] Tang Y, Wang J, Li X D, et al. Preparation of high performance Si-B-N ceramic fibers by polymer derived method [J]. Acta Chim. Sin., 2009, 67: 2750
[13] (唐 云, 王 军, 李效东等. 先驱体转化法制备高性能Si-B-N陶瓷纤维 [J]. 化学学报, 2009, 67: 2750
[14] Tang Y, Wang J, Li X D, et al. Preceramic polymer for Si-B-N-C fiber via one-step condensation of silane, BCl3, and Silazane [J]. J. Appl. Polym. Sci., 2008, 110: 921
[15] Li W H, Wang J, Xie Z F, et al. Preparation of hollow Si-B-N ceramic fibers by partial curing and pyrolysis of polyborosilazane fibers [J]. Mater. Lett., 2012, 78: 1
[16] Peng Y Q, Han K Q, Zhao X, et al. Large-scale preparation of SiBN ceramic fibres from a single source precursor [J]. Ceram. Int., 2014, 40: 4797
[17] Funayama O, Nakahara H, Okoda M, et al. Conversion mechanism of polyborosilazane into silicon nitride-based ceramics [J]. J. Mater. Sci., 1995, 30: 410
[18] Funayama O, Kato T, Tashiro Y, et al. Synthesis of a polyborosilazane and its conversion into inorganic compounds [J]. J. Am. Ceram. Soc., 1993, 76: 717
[19] Wideman T, Fazen P J, Su K, et al. Second-generation polymeric precursors for BN and SiNCB ceramic materials [J]. Appl. Organomet. Chem., 1998, 12: 681
[20] Wideman T, Cortez E, Remsen E E, et al. Reactions of monofunctional boranes with hydridopolysilazane: synthesis, characterization, and ceramic conversion reactions of new processible precursors to SiNCB ceramic materials [J]. Chem. Mater., 1997, 9: 2218
[21] Mou S W, Hu J J, Wang H F, et al. Structure and rheological property of polyborosilazane [J]. J. Mater. Sci. Eng., 2016, 34: 63
[21] (牟世伟, 胡建建, 王会峰等. SiBNC陶瓷纤维前驱体的结构及流变性能 [J]. 材料科学与工程学报, 2016, 34: 63
[22] Huang X H, Liu Y, Zhang C Y, et al. Decarburization research of SiBN ceramic fibers [J]. Chin. Syn. Fiber Ind., 2017, 40: 1
[22] (黄先华, 刘 勇, 张晨宇等. SiBN陶瓷纤维的脱碳工艺研究 [J]. 合成纤维工业, 2017, 40: 1
[23] Gervais C, Babonneau F, Ruwisch L, et al. Solid-state NMR investigations of the polymer route to SiBCN ceramics [J]. Can. J. Chem., 2003, 81: 1359
[24] Liu Y, Peng S, Cui Y J, et al. Fabrication and properties of precursor-derived SiBN ternary ceramic fibers [J]. Mater. Des., 2017, 128: 150
[25] Schuhmacher J, Berger F, Weinmann M, et al. Solid-state NMR and FT IR studies of the preparation of Si-B-C-N ceramics from boron-modified polysilazanes [J]. Appl. Organomet. Chem., 2001, 15: 809
[26] Cheng F, Toury B, Archibald S J, et al. Synthesis and structure of 2,4,6-tris [tris (dimethylamino) silylamino] borazine: {[(CH3)2N]3-SiNH}3B3N3H3 [J]. J. Organomet. Chem., 2002, 657: 71
[1] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[2] YU Chao, XING Guangchao, WU Zhengmin, DONG Bo, DING Jun, DI Jinghui, ZHU Hongxi, DENG Chengji. Effect of Submicron Al2O3 Addition on Sintering Process of Recrystallized Silicon Carbide[J]. 材料研究学报, 2022, 36(9): 679-686.
[3] DUAN Guangyu, HU Jingwen, HU Zuming, YU Xiang, CHI Changlong, LI Yue. Influence of BaTiO3 Nanowire Aspect Ratio on Dielectric Property of Poly (Metaphenylene Isophthalamide) Composite[J]. 材料研究学报, 2022, 36(7): 527-535.
[4] TAN Chong, LI Yuanyuan, WANG Huanhuan, LI Junsheng, XIA Zhi, ZUO Jinlong, YAO Lin. Preparation of g-C3N4/Ag/TiO2 NTs and Photocatalytic Degradation of Ceftazidine[J]. 材料研究学报, 2022, 36(5): 392-400.
[5] OUYANG Jie, LI Xue, ZHU Yuxin, CAO Fu, CUI Yanjuan. Enhanced Photocatalytic Hydrogen Production and Carbon Dioxide Reduction[J]. 材料研究学报, 2022, 36(2): 152-160.
[6] HAO Suju, GAO Yice, JIANG Wufeng, SUN Tianhao, ZHANG Yuzhu. Preparation of a Novel Spherical Nano-sized Iron Oxide[J]. 材料研究学报, 2022, 36(12): 887-892.
[7] ZENG Renfen, JIANG Xiangping, CHEN Chao, HUANG Xiaokun, NIE Xin, YE Fen. Effects of Er3+-doping on Performance of Bi3Ti1.5W0.5O9-Bi4Ti3O12 Intergrowth Lead-free Piezoceramics[J]. 材料研究学报, 2022, 36(10): 760-768.
[8] FENG Kai, L Guangzhe, L Bin. Synthesis and Upconversion Luminescence of Ultrafine (Lu0.5In0.5)2O3:Tm3+,Yb3+ Powders[J]. 材料研究学报, 2021, 35(8): 591-596.
[9] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
[10] SONG Guihong, LI Xiuyu, LI Guipeng, DU Hao, HU Fang. Thermoelectric Properties of Mg-rich Mg3Bi2 Films Prepared by Magnetron Sputtering[J]. 材料研究学报, 2021, 35(11): 835-842.
[11] XU Chunping, CHEN chunyue, ZHANG yonghang, Gong wei, BAN daming. Flame Retard Modification of Vinyl Ester Resin with Phosphorous Polymer Type Flame Retardant[J]. 材料研究学报, 2021, 35(11): 843-849.
[12] ZHOU Shuyu,JIN Xiaozhe,LIU jia,TIAN Ruixue,WU Aimin,HUANG Hao. Storage and Transport Properties of Sodium-ions of Carbon-constraint NiS2 Nanostructure as Cathode for Na-S Batteries[J]. 材料研究学报, 2020, 34(3): 191-197.
[13] WU Qiaofeng, ZHANG Fu, YU Yue, ZHANG Meng, YU Hua, FAN Shuanshi. Research Progress on Stability of CsPbI2Br Inorganic Perovskite Solar Cells[J]. 材料研究学报, 2020, 34(11): 811-821.
[14] DING Renhao, CAO Dan, XU Lu, WANG Ziqiang, LI Jianxi, MA Hongjuan. Effect of Electron-beam Radiation on Properties of Oriented Poly (ether-ether-ketone)[J]. 材料研究学报, 2020, 34(11): 822-828.
[15] TANG Yang. Band Gap Energy and Near Band Edge Emission Blue Shifts of ZnO Nanorods Prepared by Electrodeposition[J]. 材料研究学报, 2020, 34(11): 875-880.
No Suggested Reading articles found!