Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (3): 218-224    DOI: 10.11901/1005.3093.2018.380
Current Issue | Archive | Adv Search |
Hot Compressive Deformation and Dynamic Recrystallization of As-Forged Ti-Alloy TB6 During β Process
Delai OUYANG,Xia CUI(),Shiqiang LU,Yong XU
National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China
Cite this article: 

Delai OUYANG,Xia CUI,Shiqiang LU,Yong XU. Hot Compressive Deformation and Dynamic Recrystallization of As-Forged Ti-Alloy TB6 During β Process. Chinese Journal of Materials Research, 2019, 33(3): 218-224.

Download:  HTML  PDF(9847KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Hot compression tests of the as-forged Ti-alloy TB6 were conducted by means of thermecmaster-Z hot simulation test machine in temperature range of 950~1100oC with strain rate of 0.001~1 s-1 aiming to reveal its characters of hot compressive deformation behavior and dynamic recrystallization (DRX). Results show that the deformation activation energy of the alloy in the beta phase region is 246.7 kJ/mol; the deformation mechanism of this alloy in hot deformation is dominated by DRX, and the predominant nucleation mechanism for the growth of new grains of DRX may be ascribed to bulging nucleation. Completely dynamic recrystallization can be reached at strain rate of 0.01~0.1 s-1 and temperature below 1000oC, resulting in grain refinement of deformed microstructure. DRX grain coarsening was observed for the alloy deformed at temperatures above 1000oC and strain rates below 0.001 s-1. DRX grain size relate to Z parameter, which can be described by a function of D=6.44×102·Z -0.1628.

Key words:  as-forged titanium alloy TB6      β process      hot compressive deformation behavior      dynamic recrystallization     
Received:  09 June 2018     
ZTFLH:  TG146.4  
Fund: National Natural Science Foundation of China(51761029);Natural Science Foundation of Jiangxi Province(20161BAB206108);Natural Science Foundation of Jiangxi Provincial Department of Education(GJJ160683);and National Defense Key Disciplines Laboratory of Light Alloy Pro-cessing Science and Technology,Nanchang Hangkong University(gf201401007)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.380     OR     https://www.cjmr.org/EN/Y2019/V33/I3/218

Fig.1  Microstructures of as-forged TB6 titanium alloy
Fig.2  Flow stress?strain curves of as-forged TB6 titanium alloy deformed at 800℃ (a), 900℃ (b), 1000℃ (c) and 1100℃ (d)
Fig.3  Optical microstructures of specimens hot compressed at 825℃, strain rate of 0.01 s-1 and strain of ε=0 (a), ε=0.11 (b), ε=0.92 (c) and ε=1.61 (d)
Fig.4  Optical micrographs of specimens hot compressed with strain of 1.61 (a) 825℃, 0.001 s-1; (b) 825℃, 0.01 s-1; (c) 825℃, 0.1 s-1; (d) 825℃, 1 s-1; (e) 900℃, 0.01 s-1; (f) 1100℃, 0.01 s-1
Fig.5  Relationship between lnε˙-ln(σp) (a) and lnε˙-σp (b)
Fig. 6  Relationship between lnε˙-ln(sinh(ασp)) (a) and ln(sinh(ασp))-1/T (b)
Fig.7  Relationship between dynamically recrystallized grain size and strain rate (a) and deformation temperature (b)
Fig.8  Relationship between dynamically recrystallized grain size and Z-parameter
[1] MaC, WangG C. Superplastic tensile experiment by the fixed m value method at high-temperature for titanium alloy TB6 [J]. Forg. Stamp. Technol., 2016, 41(10): 88
[1] (马 超, 王高潮. TB6钛合金定m值法高温超塑性拉伸试验研究 [J]. 锻压技术, 2016, 41(10): 88)
[2] G?kenJ, FayedS, SkubiszP. Strain-dependent damping of Ti-10V-2Fe-3Al at room temperature [J]. Acta Phys. Pol., 2016, 130: 1352
[3] IllarionovA G, TrubochkinA V, ShalaevA M, et al. Isothermal decomposition of β-Solid solution in titanium Alloy Ti-10 V-2Fe-3Al [J]. Met. Sci. Heat Treat., 2017, 58: 674
[4] WuJ F, ZouS K, ZhangY K, et al. Microstructures and mechanical properties of β forging Ti17 alloy under combined laser shock processing and shot peening [J]. Surf. Coat. Technol., 2017, 328: 283
[5] SunZ C, WuH L, SunQ F, et al. Tri-modal microstructure in high temperature toughening and low temperature strengthening treatments of near-β forged TA15 Ti-alloy [J]. Mater. Charact., 2016, 121: 213
[6] SavvakinD G, CarmanA, IvasishinO M, et al. Effect of iron content on sintering behavior of Ti-V-Fe-Al Near-β titanium alloy [J]. Metall. Mater. Trans., 2012, 43A: 716
[7] ZhangZ X, QuS J, FengA H, et al. Achieving grain refinement and enhanced mechanical properties in Ti-6Al-4V alloy produced by multidirectional isothermal forging [J]. Mater. Sci. Eng., 2017, 692A: 127
[8] HuangS, WangL, ZhangB J, et al. Dynamic recrystallization behavior and grain size control of GH4706 superalloy [J]. Chin. J. Mater. Res., 2014, 28: 362
[8] (黄 烁, 王 磊, 张北江等. GH4706合金的动态再结晶与晶粒控制 [J]. 材料研究学报, 2014, 28: 362)
[9] GuoZ, MiodownikA P, SaundersN, et al. Influence of stacking-fault energy on high temperature creep of alpha titanium alloys [J]. Scripta Mater., 2006, 54: 2175
[10] LiuL J, LvM, WuW G. Dynamic recrystallization of Ti-6Al-4V during hot deformation [J]. Hot Work. Technol., 2014, 43(24): 1
[10] (刘丽娟, 吕 明, 武文革. 钛合金Ti-6Al-4V热变形中的动态再结晶研究 [J]. 热加工工艺, 2014, 43(24): 1)
[11] YangL Q, YangY Q. Deformed microstructure and texture of Ti6Al4V alloy [J]. Trans. Nonferr. Met. Soc. China, 2014, 24: 3103
[12] BaoR Q, HuangX, CaoC X. Deformation behavior and mechanisms of Ti-1023 alloy [J]. Trans. Nonferr. Met. Soc., 2006, 16: 274
[13] OuyangD L, FuM W, LuS Q. Study on the dynamic recrystallization behavior of Ti-alloy Ti-10V-2Fe-3V in β processing via experiment and simulation [J]. Mater. Sci. Eng., 2014, 619A: 26
[14] ZhaoY Q, ZhouL, DengJ. High temperature deformation mechanism of Ti-40 burn resistant titanium alloy as-annealing [J]. Rare Met., 1999, 18: 203
[15] FanJ K, KouH C, TangB, et al. Dynamic recrystallization behavior of Ti-7333 alloy in the β hot process [J]. Sci. Technol. Rev., 2013, 31(5): 44
[15] (樊江昆, 寇宏超, 唐 斌等. Ti-7333合金β锻动态再结晶行为 [J]. 科技导报, 2013, 31(5): 44)
[16] WangG, HuiS X, YeW J, et al. Hot compressive behavior of Ti-3.0Al-3.7Cr-2.0Fe-0.1B titanium alloy [J]. Trans. Nonferr. Met. Soc., 2012, 22: 2965
[17] ZhaoJ, ZhongJ, YanF, et al. Deformation behaviour and mechanisms during hot compression at supertransus temperatures in Ti-10V-2Fe-3Al [J]. J. Alloy. Compd., 2017, 710: 616
[18] LiC W, XieH, MaoX N, et al. High temperature deformation of TC18 titanium alloy [J]. Rare Met. Mater. Eng., 2017, 46: 326
[19] OuyangD L, LuS Q, CuiX, et al. Transformation of deformation-induced martensite in TB6 titanium alloy [J]. The Chin. J. Nonferr. Met., 2010, 20: 2307
[19] (欧阳德来, 鲁世强, 崔 霞等. TB6钛合金热变形诱导马氏体转变 [J]. 中国有色金属学报, 2010, 20: 2307)
[20] SellarsC M, MctegartW J. On the mechanism of hot deformation [J]. Acta Metall., 1966, 14: 1136
[21] HuangS Q, YiY P, LiP C. High temperature deformation behavior of 23Co13Ni11Cr3Mo ultrahigh strength steel [J]. Chin. J. Mater. Res., 2011, 25(3): 283
[21] (黄始全, 易幼平, 李蓬川. 23Co13Ni11Cr3Mo超高强钢的高温变形行为 [J]. 材料研究学报, 2011, 25(3): 283)
[22] ChenJ, TangS, ZhouY L, et al. Dynamic recrystallization behaviors of low carbon Q690qENH high-strength bridge steels [J]. Chin. J. Mater. Res., 2012, 26(2): 199
[22] (陈 俊, 唐 帅, 周砚磊等. 低碳Q690qENH高强桥梁钢的动态再结晶行为 [J]. 材料研究学报, 2012, 26(2): 199)
[1] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[2] YU Sen, CHEN Leli, LUO Rui, YUAN Zhizhong, WANG Shuang, GAO Pei, CHENG Xiaonong. Dynamic Recrystallization and Microstructure Evolution Mechanism of GH4169 Alloy[J]. 材料研究学报, 2023, 37(3): 211-218.
[3] CUI Zhiqiang, ZHANG Ningfei, WANG Jie, HOU Qingyu, HUANG Zhenyi. High Temperature Compression Deformation Behavior of 9Mn27Al10Ni3Si Low Density Steel[J]. 材料研究学报, 2022, 36(12): 907-918.
[4] LIU Yang, KANG Rui, FENG Xiaohui, LUO Tianjiao, LI Yingju, FENG Jianguang, CAO Tianhui, HUANG Qiuyan, YANG Yuansheng. Microstructure and Mechanical Properties of Extruded Mg-Alloy Mg-Al-Ca-Mn-Zn[J]. 材料研究学报, 2022, 36(1): 13-20.
[5] LIU Chao, WANG Xin, MEN Yue, ZHANG Haoyu, ZHANG Siqian, ZHOU Ge, CHEN Lijia, LIU Haijian. Dynamic Recrystallization of Ti-6Al-4V Alloy During Hot Compression[J]. 材料研究学报, 2021, 35(8): 583-590.
[6] SUN He, CHEN Ming, CHENG Ming, WANG Ruixue, WANG Xu, HU Xiaodong, ZHAO Hongyang, JU Dongying. A Multi-scale Model for Elucidation of Recrystallization and Texture of Mg-Alloy Sheet by Warm-rolling Process[J]. 材料研究学报, 2021, 35(5): 339-348.
[7] YANG Jingcheng, WANG Lizhong, ZHONG Zhiping, ZHENG Yingjun. Flow Stress Prediction Model of 37CrS4 Special Steel Based on Dynamic Recrystallization[J]. 材料研究学报, 2021, 35(4): 284-292.
[8] CHENG Xiaonong, GUI Xiang, LUO Rui, XU Guifang, YUAN Zhizhong, ZHOU Yuseng, GAO Pei. Dynamic Recrystallization Behavior and Kinetics Model of a New Developed Austenitic Heat Resistant Steel CHDG-A[J]. 材料研究学报, 2020, 34(8): 611-620.
[9] Tianhai WU,Jianjun WANG,Ying ZHANG,Huabing LI,Guangwei FAN,Chunming LIU. Microstructural Evolution and Softening Mechanism of 2205 Duplex Stainless Steel during Hot Compression[J]. 材料研究学报, 2019, 33(4): 254-260.
[10] Yutong YANG,Rui LUO,Xiaonong CHENG,Xiang GUI,Leli CHEN,Wei WANG,Qi ZHENG. High Temperature Plastic Deformation Behavior and Hot Workability of an Alumina-forming Austenitic Heat-resisting Alloy[J]. 材料研究学报, 2019, 33(3): 232-240.
[11] Mei XU, Zhenli MI, Hui LI, Di TANG, Haitao JIANG. Constitutive Model Based on Dislocation Density Theory for Hot Deformation Behavior of Ultra-high Strength Dual Phase Steel DP1000[J]. 材料研究学报, 2017, 31(8): 576-584.
[12] Congfeng WU,Shilei LI,Hailong ZHANG,Xitao WANG,Genqi WANG. On High Temperature Tensile Fracture Behavior of 316LN Austenitic Stainless Steel[J]. 材料研究学报, 2014, 28(7): 481-489.
[13] Yingying ZONG,Daosheng WEN,Bin SHAO,Debin SHAN. Effect of 0.2% H on High Temperature Tensile Deformation Behavior of Ti2AlNb Based Alloy Plate[J]. 材料研究学报, 2014, 28(4): 248-254.
[14] CHEN Jun TANG Shuai ZHOU Yanlei LIU Zhenyu WANG Guodong YANG Ying CHEN Junping. Dynamic Recrystallization Behaviors of Low Carbon Q690qENH High–strength Bridge Steels[J]. 材料研究学报, 2012, 26(2): 199-205.
[15] HUANG Shiquan YI Youping LI Pengchuan. High Temperature Deformation Behavior of 23Co13Ni11Cr3Mo Ultrahigh Strength Steel[J]. 材料研究学报, 2011, 25(3): 283-288.
No Suggested Reading articles found!