Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (11): 811-819    DOI: 10.11901/1005.3093.2018.317
Orginal Article Current Issue | Archive | Adv Search |
Effect of Preparation Methods on Ni-distribution and Catalytic Performance of Foam Structured Catalyst Ni/Al2O3-SiC for Hydrogenation of Benzaldehyde
Kai LI1,2, Yilai JIAO1, Zhenming YANG1, Jinsong ZHANG1()
1 Shenyang National Research Center for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article: 

Kai LI, Yilai JIAO, Zhenming YANG, Jinsong ZHANG. Effect of Preparation Methods on Ni-distribution and Catalytic Performance of Foam Structured Catalyst Ni/Al2O3-SiC for Hydrogenation of Benzaldehyde. Chinese Journal of Materials Research, 2018, 32(11): 811-819.

Download:  HTML  PDF(7532KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The foam structured catalysts of Ni/Al2O3-SiC were prepared via conventional impregnation (IM) and deposition-precipitation (DP) methods. These catalysts were characterized by means of scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), N2 absorption-desorption, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and H2 temperature-programmed reduction (H2-TPR). The effect of preparation methods on the distribution, particle size and valence state of the active component Ni, as well as the interaction between Ni and the supporter was investigated. Furthermore, the catalytic performance of the catalysts prepared by different methods was evaluated for the liquid-phase hydrogenation of benzaldehyde. Results show that the Ni enrichment occurred on the coating surface of three catalysts prepared via impregnating and then dried in air at 40℃ and 160℃, as well as subjected to vacuum freeze-drying, respectively. The foam catalyst dried at 160℃ showed the most serious enrichment of Ni on the coating surface. Compared with the three impregnated foam catalysts, the catalyst prepared by DP method has a uniform Ni distribution and smaller Ni particles size, leading to its higher catalytic performance for hydrogenation of benzaldehyde.

Key words:  inorganic non-metallic materials      catalytic materials      structured catalysts      Al2O3 coating      Ni distribution      benzaldehyde hydrogenation     
Received:  11 May 2018     
ZTFLH:  TQ426  
Fund: Supported by National Key Research & Development Program of China (No. 2017YFB0310405)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.317     OR     https://www.cjmr.org/EN/Y2018/V32/I11/811

Fig.1  Scheme of selective hydrogenation of benzaldehyde
Fig.2  SEM images of (A) SiC foam ceramic and (B) Al2O3-SiC foam structured support
Fig.3  SEM images and Ni distribution of the cross-section of the Ni/A25S catalysts with different preparation methods. (A) Ni/A25S (DP); (B) Ni/A25S (IM-Freeze); (C) Ni/A25S (IM-40); (D) Ni/A25S (IM-160)
Fig.4  SEM images and Ni distribution of the coating surface of the Ni/A25S catalysts with different preparation methods. (A) Ni/A25S (DP); (B) Ni/A25S (IM-Freeze); (C) Ni/A25S (IM-40); (D) Ni/A25S (IM-160)
Fig.5  XRD patterns of structured catalysts with different preparation methods
Structured catalysts Ni loading a /% SBET /m2gfoam VBJH /cm3gfoam DBJH /nm dmb/nm
Ni/A25S (IM-40) 15.5 20.5 0.071 7.2 11
Ni/A25S (IM-160) 16.3 21.5 0.073 7.1 11.7
Ni/A25S (IM-Freeze) 16.1 20.1 0.07 7.4 11
Ni/A25S (DP) 15.7 19.2 0.067 7.5 10
Table 1  Physical parameters of structured catalysts
Fig.6  TEM images of various structured catalysts: (A) Ni/A25S (IM-40), (B) Ni/A25S (IM-160), (C) Ni/A25S (IM-Freeze) and (D) Ni/A25S (DP)
Fig.7  XPS patterns of Ni 2p of structured catalysts with different preparation methods
Fig.8  H2-TPR profiles of unreduced catalysts with different preparation methods
Fig.9  (A, B) catalytic performance of Ni/A25S foam catalysts for hydrogenation of benzaldehyde as a function of reaction time. Reaction conditions: benzaldehyde 10 mL, isopropanol 140 mL, 90℃, 2 MPa H2, stirring rate at 300 r/min
[1] Zhou F, Zhu Y C, Zhou Y H, et al.Performance of palladium catalysts with different supports for the hydrogenation of benzaldehyde[J]. Appl. Chem. Ind., 2013, 42: 606(周放, 朱玉超, 周永华等. 不同载体负载Pd催化剂的苯甲醛加氢性能[J]. 应用化工, 2013, 42: 606)
[2] Saadi A, Merabti R, Rassoul Z, et al.Benzaldehyde hydrogenation over supported nickel catalysts[J]. J. Mol. Catal., 2006, 253A: 79
[3] Liu W, Li Y R, Chen X L, et al.Catalytic hydrogenation of benzaldehyde on Ni/Al2O3 or Co-Ni/Al2O3 catalyst[J]. Asian J. Chem., 2013, 25: 1565
[4] Kong X J, Liu J H.Efficient hydrogenation of aromatic aldehydes to corresponding benzyl alcohols over Ni-B/MIL-101[J]. RSC Adv., 2014, 4: 33564
[5] Mironenko R M, Belskaya O B, Zaikovskii V I, et al.Effects of the carbon support nature and ruthenium content on the performances of Ru/C catalysts in the liquid-phase hydrogenation of benzaldehyde to benzyl alcohol[J]. Monatsh. Chem., 2015, 146: 923
[6] Li X H, Zheng W L, Pan H Y, et al.Pt nanoparticles supported on highly dispersed TiO2 coated on SBA-15 as an efficient and recyclable catalyst for liquid-phase hydrogenation[J]. J. Catal., 2013, 300: 9
[7] Pinna F, Menegazzo F, Signoretto M, et al.Consecutive hydrogenation of benzaldehyde over Pd catalysts: Influence of supports and sulfur poisoning[J]. Appl. Catal., 2001, 219A: 195
[8] Divakar D, Manikandan D, Kalidoss G, et al.Hydrogenation of benzaldehyde over palladium intercalated bentonite catalysts: Kinetic studies[J]. Catal. Lett., 2008, 125: 277
[9] Machado R M, Broekhuis R R, Nordquist A F, et al.Applying monolith reactors for hydrogenations in the production of specialty chemicals—process and economic considerations[J]. Catal. Today, 2005, 105: 305
[10] Pérez-Cadenas A F, Zieverink M M P, Kapteijn F, et al. High performance monolithic catalysts for hydrogenation reactions[J]. Catal. Today, 2005, 105: 623
[11] Cybulski A, Moulijn J A.Monoliths in heterogeneous catalysis[J]. Catal. Rev., 1994, 36: 179
[12] de Lathouder K M, Fló T M, Kapteijn F, et al. A novel structured bioreactor: Development of a monolithic stirrer reactor with immobilized lipase[J]. Catal. Today, 2005, 105: 443
[13] Vergunst T, Kapteijn F, Moulijn J A.Monolithic catalysts — Non-uniform active phase distribution by impregnation[J]. Appl. Catal., 2001, 213A: 179
[14] Zhao Y J, Zhou J, Zhang J G, et al.Preparation and characterization of Ru/Al2O3/cordierite monolithic catalysts for selective hydrogenation of benzene to cyclohexene[J]. Catal. Lett., 2009, 131: 597
[15] Lee S Y, Aris R.The distribution of active ingredients in supported catalysts prepared by impregnation[J]. Cat. Rev, 1985, 27: 207
[16] Lekhal A, Glasser B J, Khinast J G.Impact of drying on the catalyst profile in supported impregnation catalysts[J]. Chem. Eng. Sci., 2001, 56(15): 4473
[17] Villegas L, Masset F, Guilhaume N.Wet impregnation of alumina-washcoated monoliths: Effect of the drying procedure on Ni distribution and on autothermal reforming activity[J]. Appl. Catal., 2007, 320A: 43
[18] Xu X D, Vonk H, van de Riet A C J M, et al. Monolithic catalysts for selective hydrogenation of benzaldehyde[J]. Catal. Today, 1996, 30: 91
[19] Twigg M V, Richardson J T.Theory and applications of ceramic foam catalysts[J]. Chem. Eng. Res. Des., 2002, 80: 183
[20] Lucci F, Della Torre A, Montenegro G, et al.On the catalytic performance of open cell structures versus honeycombs[J]. Chem. Eng. J., 2015, 264: 514
[21] Zapico R R, Marín P, Díez F V, et al.Liquid hold-up and gas-liquid mass transfer in an alumina open-cell foam[J]. Chem. Eng. Sci., 2016, 143: 297
[22] Wei W, Cao X M, Tian C, et al.The influence of Si distribution and content on the thermoelectric properties of SiC foam ceramics[J]. Micropor. Mesopor. Mater., 2008, 112: 521
[23] Yang Z M, Tian C, Jiao Y L, et al.Preparation and applications of foam SiC[J]. Chem. React. Eng. Technol., 2013, 29: 269(杨振明, 田冲, 矫义来等. 泡沫碳化硅的制备及应用[J]. 化学反应工程与工艺, 2013, 29: 269)
[24] Meille V.Review on methods to deposit catalysts on structured surfaces[J]. Appl. Catal., 2006, 315: 1
[25] Luo N, Liu K X, Li X J, et al.Systematic study of detonation synthesis of Ni-based nanoparticles[J]. Chem. Eng. J., 2012, 210: 114
[26] Hou Z Y, Yokota O, Tanaka T, et al.Characterization of Ca-promoted Ni/α-Al2O3 catalyst for CH4 reforming with CO2[J]. Appl. Catal., 2003, 253: 381
[27] Li C P, Chen Y W.Temperature-programmed-reduction studies of nickel oxide/alumina catalysts: Effects of the preparation method[J]. Thermochim. Acta, 1995, 256: 457
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!