Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (11): 801-808    DOI: 10.11901/1005.3093.2016.733
Orginal Article Current Issue | Archive | Adv Search |
Characterization and Simulation of Strain-hardening Behavior of a Cold-rolled Dual Phase Steel of 780 MPa Grade by Means of Modified C-J Method and RVE Model
Yanhua WANG, Xingmin HUANG, Lei ZHANG, Yuanbo GUO, Longsheng CHU, Guangze DAI
1 School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
2 Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China.
Cite this article: 

Yanhua WANG, Xingmin HUANG, Lei ZHANG, Yuanbo GUO, Longsheng CHU, Guangze DAI. Characterization and Simulation of Strain-hardening Behavior of a Cold-rolled Dual Phase Steel of 780 MPa Grade by Means of Modified C-J Method and RVE Model. Chinese Journal of Materials Research, 2017, 31(11): 801-808.

Download:  HTML  PDF(4309KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The strain-hardening behavior of a cold-rolled dual phase steel of 780MPa grade after different heat treatments was analyzed by a modified Crussard-Jaoul ( C-J ) method, and the deformation behavior of which was simulated with representative volume element (RVE) model. The results show that dual phase steels of different states all exhibit higher initial strain-hardening rate. The steel containing island- and needle-like martensite showed two-stage strain-hardening characteristics which related to the plastic deformation of ferrite and coordination plastic deformation of ferrite and martensite respectively, while the steel containing coarse block-like martensite exhibited three-stage strain-hardening characteristics and of which, the strain hardening capacity of the third stage decreases significantly due to the plastic deformation. The finite element method (FEM) simulation result showed that the strain concentration of the dual phase steel containing coarse block- and needle-like martensite mainly distributed in the interface of ferrite and martensite, while that containing island-like martensite distributed in junctions of martensite grains.

Key words:  metallic materials      cold-rolled dual phase steel      strain hardening      modified C-J method      RVE model     
Received:  20 December 2016     
Fund: Supported by Science and Technology Support Program of Sichuan Province

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.733     OR     https://www.cjmr.org/EN/Y2017/V31/I11/801

Elements C Si Mn Cr Ni Al Fe
Content 0.076 0.150 1.430 0.180 0.042 0.041 Bal.
Table 1  The chemical components of experimental steel (mass fraction, %)
Fig.1  Schematic illustration of heat treatment processes
Fig.2  SEM micrographs of experimental steels microstructure of different processes (a) cold-rolled, (b) T1, (c) T2, (d) T3
F ε/% 0.15 4.05 6.03 9.09 12.98 16.99
σ/MPa 396.70 453.90 470.30 500.08 502.55 521.56
M ε/% 0.18 0.59 0.99 1.96 6.22 11.10
σ/MPa 368.89 604.61 800.01 1028.20 1345.14 1400.00
Table 2  Stress and strain parameters of ferrite and martensite during simulation
Fig.3  Engineering (a) and true (b) stress-strain curves of experimental steels of different processes
Sample YS/MPa UTS/MPa Total elongation/% UTS×TA/GPa% Martensite volume fraction/% Grain size/µm
Cold-rolled 400 800 5.32 4.16 32.06 7.69
T1 350 762 8.07 6.15 55.87 17.55
T2 260 670 11.95 8.02 32.03 6.62
T3 300 732 18.02 13.19 48.41 5.70
Table 3  Parameters of microstructure and mechanical properties of experimental steels of different processes
Fig.4  ln(dσ/dε) vs lnσ curves of experimental steels of different processes
Fig.5  Finite element models of three different heat treatments processes (a) T1, (b) T2, (c) T3
Fig.6  Experimental and FEM curves of true stress-strain of experimental steels of different processes (a) T1, (b) T2, (c) T3
Sample m1 m2 m3 ε1/% ε2/%
Cold-rolled 1.17 2.60 17.30 0.90 1.30
T1 1.57 3.20 16.20 0.90 1.60
T2 2.43 5.40 1.60
T3 2.40 5.42 1.50
Table 4  Parameters of ln (dσ/dε) vs lnσ curves of experimental steels of different processes
Εavg/% 0.9 1.6 3 5 10 15
T1 F 1.41% 7.33% 33.12% 64.03%
M 0.02% 0.21% 0.37%
T2 F 0.98% 3.03% 60.50%
M 0.39% 1.30%
T3 F 0.02% 0.14% 5.82% 19.19%
M 0.10% 0.70% 1.60%
Table 5  Proportion of the strain concentration area of the different experimental steels under different average strain
Fig.7  Distribution of equivalent plastic strain of ferrite (a) and martensite (b) of T1 experimental steel at the 5% strain level
Fig.8  Distribution of equivalent plastic strain offerrite (a) and martensite (b) of T2 experimental steel at the 10% strain level
Fig.9  Distribution of equivalent plastic strain of ferrite (a) and martensite (b) of T3 experimental steel at the 15% strain level
[1] Sodjit S, Uthaisangsuk V.Microstructure based prediction of strain hardening behavior of dual phase steels[J]. Mater. Des., 2012, 41: 370
[2] Bleck W, Papaefthymiou S, Frehn A.Microstructure and tensile properties in dual phase and trip steels[J]. Steel Res. Int., 2004, 75: 704
[3] Sarwar M, Priestner R.Influence of ferrite-martensite microstructural morphology on tensile properties of dual-phase steel[J]. J. Mater. Sci., 1996, 31: 2091
[4] Dai Q F, Song R B, Cai H J, et al.Tensile mechanical behaviour of ultra-high strength cold rolled dual phase steel DP1000 at high strain rates[J]. Chin. J. Mater. Res., 2013, 27: 25(代启锋, 宋仁伯, 蔡恒君等. 超高强冷轧双相钢DP1000高应变速率下的拉伸性能[J]. 材料研究学报, 2013, 27: 25)
[5] Sun X, Choi K S, Liu W N, et al.Predicting failure modes and ductility of dual phase steels using plastic strain localization[J]. Int. J. Plast., 2009, 25: 1888
[6] Kadkhodapour J, Schmauder S, Raabe D, et al.Experimental and numerical study on geometrically necessary dislocations and non-homogeneous mechanical properties of the ferrite phase in dual phase steels[J]. Acta Mater., 2011, 59: 4387
[7] Kim N J, Thomas G.Effects of morphology on the mechanical behavior of a dual phase Fe/2Si/0.1C steel[J]. Metall. Trans., 1981, 12A: 483
[8] Karmakar A, Ghosh M, Chakrabarti D.Cold-rolling and inter-critical annealing of low-carbon steel: Effect of initial microstructure and heating-rate[J]. Mater. Sci. Eng., 2013, 564A: 389
[9] Ahmad E, Manzoor T, Ziai M M A, et al. Effect of martensite morphology on tensile deformation of dual-phase steel[J]. J. Mater. Eng. Perform., 2012, 21: 382
[10] Rigsbee J M, VanderArend P J. Laboratory studies of microstructure and structure-property relationship in dual-phase HSLA steels [A]. Formable HSLA and dual-phase steels[C]. New York: TMS-AIME, 1979: 56
[11] Lanzillotto C A N, Pickring F B. Structure-property relationships in dual-phase steels[J]. Met. Sci., 1982, 16: 371
[12] Zhu G M, Kuang S, Chen G J, et al.Effect of martensite on yield characteristics of cold rolled C-Si-Mn dual phase steel[J]. J. Mater. Eng., 2011, (4): 66(朱国明, 邝霜, 陈贵江等. 马氏体对C-Si-Mn冷轧双相钢屈服特性的影响[J]. 材料工程, 2011, (4): 66)
[13] Kuang S, Kang Y L, Yu H, et al.Strain-hardening characteristics of a cold rolled C-Si-Mn dual phase steel[J]. J. Mater. Eng., 2009, (2): 11(邝霜, 康永林, 于浩等. C-Si-Mn冷轧双相钢的应变硬化特性[J]. 材料工程, 2009, (2): 11)
[14] Lawson R D, Matlock D K, Krauss G.The effect of microstructure on the deformation behavior and mechanical properties of a dual-phase steel [A]. Fundamentals of Dual-Phase Steels[C]. New York: AIME, 1984: 347
[15] Marvi-Mashhadi M, Mazinani M, Rezaee-Bazzaz A.FEM modeling of the flow curves and failure modes of dual phase steels with different martensite volume fractions using actual microstructure as the representative volume[J]. Comput. Mater. Sci., 2012, 65: 197
[16] Paul S K.Real microstructure based micromechanical model to simulate microstructural level deformation behavior and failure initiation in DP 590 steel[J]. Mater. Des., 2013, 44: 397
[17] Wu J, Yang Q X, Zhang C L.Numerical simulation of stress-strain curve of weathering dual-phase steel [A]. Proceedings of the 2005 National Conference on Computational Materials, Simulation and Image Analysis[C]. Qinhuangdao: The Chinese Society for Metals, Chinese Society of Stereology, 2005(吴晶, 扬庆祥, 张春玲. 耐候双相钢应力-应变曲线数值模拟 [A]. 2005年全国计算材料、模拟与图像分析学术会议论文集[C]. 秦皇岛: 中国金属学会, 中国体视学学会, 2005)
[18] Mazinani M, Poole W J.Effect of martensite plasticity on the deformation behavior of a low-carbon dual-phase steel[J]. Metall. Mater. Trans., 2007, 38A: 328
[19] Marvi-Mashhadi M, Mazinani M, Rezaee-Bazzaz A.FEM modeling of the flow curves and failure modes of dual phase steels with different martensite volume fractions using actual microstructure as the representative volume[J]. Comput. Mater. Sci., 2012, 65: 197
[20] Pouranvari M.Tensile strength and ductility of ferrite-martensite dual phase steels[J]. MJoM, 2010, 16: 187
[21] Kadkhodapour J, Schmauder S, Raabe D, et al.Experimental and numerical study on geometrically necessary dislocations and non-homogeneous mechanical properties of the ferrite phase in dual phase steels[J]. Acta Mater., 2011, 59: 4387
[22] Zhao Z Z, Ye J Y, Wang Z G, et al.Strain-hardening behavior of cold rolled dual phase steel with high strength[J]. J. Shenyang Univ. Technol., 2013, 35: 36(赵征志, 叶洁云, 汪志刚等. 高强度冷轧双相钢应变硬化行为[J]. 沈阳工业大学学报, 2013, 35: 36)
[23] Colla V, De Sanctic M, Dimatteo A, et al. Strain hardening behavior of dual-phase steels [J]. Metall. Mater. Trans., 2009, 40 A : 2557
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!