Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (8): 576-584    DOI: 10.11901/1005.3093.2016.728
Orginal Article Current Issue | Archive | Adv Search |
Constitutive Model Based on Dislocation Density Theory for Hot Deformation Behavior of Ultra-high Strength Dual Phase Steel DP1000
Mei XU1, Zhenli MI1(), Hui LI2, Di TANG3, Haitao JIANG1
1 Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
2 College of Engineering,Yantai Nanshan University, Yantai 265700, China
3 Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

Mei XU, Zhenli MI, Hui LI, Di TANG, Haitao JIANG. Constitutive Model Based on Dislocation Density Theory for Hot Deformation Behavior of Ultra-high Strength Dual Phase Steel DP1000. Chinese Journal of Materials Research, 2017, 31(8): 576-584.

Download:  HTML  PDF(979KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The compression deformation behavior of ultra-high strength dual phase steel (UHS-DP1000) was investigated by strain rates from 0.05 s-1 to 10 s-1 at temperatures from 950°C to 1150°C. The influence of deformation temperature and strain rate on the hot flow curves was analyzed. Then a constitutive model for hot deformation of the steel UHS-DP1000 was established based on the dislocation density theory. The relevant softening mechanism of the steel was revealed in terms of the following two aspects that by low strain rates (lower than 0.05 s-1) at high temperatures the dynamic recrystallization (DRX) softening mechanism was more evident, while by strain rates higher than 0.1 s-1 the dynamic recovery (DRV) softening mechanism was dominant. The two softening mechanisms worked simultaneously by strain rates in a range between 0.05 s-1 and 0.1 s-1. The stress-strain values predicted by the present model for the steel UHS-DP1000 are well agreed with those acquired from experiments, which further confirmed that the established constitutive model could give an accurate estimate for the flow stress of high temperature deformation of the steel UHS-DP1000.

Key words:  metallic materials      dislocation density      constitutive relationship      ultra-high strength dual phase steel (UHS-DP1000)      dynamic recrystallization      critical strain     
Received:  11 December 2016     
ZTFLH:  TG111  
Fund: Supported by National Natural Science Foundation of China (No.51371032)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.728     OR     https://www.cjmr.org/EN/Y2017/V31/I8/576

Fig.1  Flow stress curves of UHS-DP1000 deformed at different temperatures and strain rates (εc-critical strain; εp-peak strain) of ε˙=0.05 s-1 (a), ε˙=0.1 s-1 (b), ε˙=1 s-1 (c), ε˙=5 s-1 (d), ε˙=10 s-1 (e) and at ε˙=0.05~0.1 s-1 and T=1050~1150℃ (f)
Deformation temperature/℃ Srain rate/s-1 Softening mechanism
1050~1150 ≤0.1 work hardening (WH)-dynamic recovery (DRV)-dynamic recrystallization (DRX)
950~1050 ≤0.05
1050~1150 >0.1 work hardening (WH)-dynamic recovery (DRV)
950~1050 >0.05
Table 1  Softening mechanism of UHS-DP1000 deformed at different temperatures and strain rates
Fig.2  Relationship between stress and working hardening of UHS-DP1000 deformed at different temperatures and strain rates of ε˙=0.05 s-1 different temperatures (a), 1050℃ and different strain rates (b)
Fig.3  θ-σ curve (a) and lnθ-ε curve (b) at 950℃ and 0.05 s-1 with their corresponding third order polynomial for UHS-DP1000
Fig.4  Relationship of σp-σc (a) and εp-εc (b) based on third order polynomial of θ-σ curve and lnθ-ε curve
No. Strain rate/s-1 Deformation temperature/℃ σsat r F2 a
d01 0.05 1150 58.3 7.038 41.95 -297.9
d02 0.05 1100 70.92 5.722 50.43 -181.2
d03 0.05 1050 85.05 5.48 64.64 -159.5
d04 0.05 1000 95.95 5.292 77.17 -66.84
d05 0.05 950 114.9 4.875 85.45 -35.88
d10 0.1 1150 59.32 7.325 46.59 -244.4
d09 0.1 1100 65.68 6.451 56.75 -170.5
d08 0.1 1050 83.93 6.376 71.28 -100.8
d07 0.1 1000 104.7 5.836
d06 0.1 950 126.7 5.339
d11 1 1150 80.89 7.331
d12 1 1100 97.52 6.829
d13 1 1050 105.4 5.852
d14 1 1000 145.3 5.474
d15 1 950 170 5.322
d20 5 1150 104.9 6.447
d19 5 1100 122.2 6.408
d18 5 1050 145.1 6.332
d17 5 1000 163.7 6.004
d16 5 950 187.6 5.723
d21 10 1150 110 7.355
d22 10 1100 134.4 6.848
d23 10 1050 152.5 6.356
d24 10 1000 183 5.728
d25 10 950 210.3 5.106
Table 2  Calculated parameters of constitutive relationship at different temperatures and strain rates
Deformation temperature/°C Strain rate/s-1 Hot deformation constitutive model
1050~1150 ≤0.1 σ=σsat2-σsat2-σ02exp-12,ε<εcσ=σp-F2expaε-εp2+F2,ε>εc
σsat=1.042×ε˙-0.01566exp47460RT
r=75.84×ε˙0.1254exp-24380RT
F2=0.9203×ε˙0.1676exp51660RT
a=-9.785×106×ε˙-0.2707exp-132700RT
950~1050 ≤0.05
1050~1150 >0.1 σ=σsat2-σsat2-σ02exp-12
σsat=4.333×ε˙0.1144exp28700RT
r=25.95×ε˙0.002238exp-12490RT
950~1050 >0.05
Table 3  Constitutive relationship of UHS-DP1000 deformed at different temperatures and strain rates
Fig.5  Comparison of predicted flow stress values and experimental values under different deformation condition
[1] Tang D, Mi Z L, Chen Y L.Technology and research and development of advanced automobile steel abroad[J]. Iron&Steel, 2005, 40(6): 1(唐荻, 米振莉, 陈雨来. 国外新型汽车用钢的技术要求及研究开发现状[J]. 钢铁, 2005, 40(6): 1)
[2] Yu W H, Zhou B B, Su J J, et al.Research on the deformation resis tance of 600 MPa hot-rolled DP steel[J]. China Metallurgy,2012, 22(11): 21(余万华, 周斌斌, 苏捷杰等.热轧DP600双相钢变形抗力的研究[J]. 中国冶金, 2012, 22(11): 21)
[3] Chen J, Li H T, Hu J P, et al.Experimental research on deformation resistance of hot-rolled DP600 dual phase steel[J]. Hot Working Technology, 2014, 43(9): 64(陈靖, 李宏图, 胡建平等. 热轧DP600双相钢变形抗力的实验研究[J]. 热加工工艺, 2014, 43(9): 64)
[4] Pang Q H, Tang D, Zhao Z Z.Micrstructure based model for the stress-strain relationship of hot rolled dual phase steel[J]. Chin. J. of Eng.,2015, 37(11): 1442(庞启航, 唐荻, 赵征志. 热轧双相钢微观应力-应变模型[J]. 工程科学学报, 2015, 37(11): 1442)
[5] Saeidi N, Ashrafizadeh F, Niroumand B.Development of a new ultrafine grained dual phase steel and examination of the effect of grain size on tensile deformation behavior[J]. Mater. Sci.Eng., A, 2014, (599): 145
[6] Dai Q F, Song R B, Cai H J, et al.Tensile mechanical behavior of ultra-high strength cold rolled dual phase steel DP1000 at high strain rates[J]. Chin. J. Mater. Res., 2013, 27(1): 25(代启锋, 宋仁伯, 蔡恒君等. 超高强冷轧双相钢DP1000高应变速率下的拉伸性能[J]. 材料研究学报, 2013, 27(1): 25)
[7] HosseiniH T, Anbarlooie B, Kadkhodapour J.Micromechanics stress-strain behavior prediction of dual phase steel considering plasticity and grain boundaries debonding[J]. Mater. Des., 2015, (68): 167
[8] Wei X, Fu L M, Liu S C, et al.Deformation behavior of constituent phases and the affected factors in dual-phase steel[J]. Chin. J. Mater. Res., 2013, 27(6): 665(魏兴, 付立铭, 刘世昌等.双相钢组成相的变形行为及其影响因素[J]. 材料研究学报, 2013, 27(6): 665)
[9] Wang Z G, Zhao A M, Ye J Y, et al.Microstructure and textural evolution of micro-carbon DP steel during the heating stage of continued annealing process[J]. Chin. J. Mater. Res., 2013, 27(6): 561(汪志刚, 赵爱民, 叶洁云等. 微碳DP钢在连续退火加热段的组织与织构演变[J]. 材料研究学报, 2013, 27(6): 561)
[10] Dong D Y, Liu C, Wang L, et al.Effect of strain rate on dynamic deformation behavior of DP780 steel[J]. Acta Metall. Sin., 2013, 49(2): 159(董丹阳, 刘畅, 王磊等.应变速率对DP780钢动态拉伸变形行为的影响[J]. 金属学报, 2013, 49(2): 159)
[11] Azarbarmas M, Aghaie-Khafri M, Cabrera J M, et al.Dynamic recrystallization mechanisms and twining evolution during hot deformation of Inconel 718[J].Mater. Sci. Eng. A, 2016, (678): 137
[12] Yang S L, Shen J, Yan X D, et al.Dynamic recrystallization kinetics and nucleation mechanism of Al-Cu-Li alloy based on flow behavior[J]. Chin. J. Nonferrous Met., 2016, 26(2): 365(杨胜利, 沈健, 闫晓东等. 基于Al-Cu-Li合金流变行为的动态再结晶动力学与形核机制[J]. 中国有色金属学报, 2016, 26(2): 365)
[13] Jiang H T, Zeng S W, Zhao A M,et al.Hot deformation behavior of β phase containing γ-TiAl alloy[J]. Mater. Sci. Eng. A, 2016, (661): 160
[14] Chen J, Tang S, Zhou Y L, et al.Microstructure and textural evolution of micro-carbon DP steel during the heating stage of continued annealing process[J]. Chin. J. Mater. Res., 2012, 26(2): 199(陈俊, 唐帅, 周砚磊等. 低碳Q690qENH高强桥梁钢的动态再结晶行为[J]. 材料研究学报, 2012, 26(2): 199)
[15] Bi J F, Li Z L, Shan Q, et al.Investigation on high temperature deformation behavior and microstructure evolution of Si-Mn-Cr-B Alloy steel[J]. Chin. J. Mater. Res., 2016, 30(8): 595(毕金凤, 李祖来, 山泉等. Si-Mn-Cr-B合金钢的高温变形行为及组织演变研究[J]. 材料研究学报, 2016, 30(8): 595)
[16] Lin Y C, Chen M S, Zhong J.Constitutive modeling for elevated temperature flow behavior of 42CrMo steel[J].Comput. Mater. Sci., 2008, (42): 470
[17] Ding Z Y, Hu Q D, Zeng L,et al.Hot deformation characteristics of as-cast high-Cr ultra-super-critical rotor steel with columnar grains[J]. Int. J. Minerals, Metall. Mater.,2016, 23(11): 1275
[18] Yu W, Xu L X, Zhang Y, et al.Constitutive equation for high temperature flow stress of 95CrMo steel[J]. Trans. Mater. Heat Treat., 2015, 36(10): 262(余伟, 许立雄, 张昳等. 95CrMo钢高温流变应力的本构方程[J].材料热处理学报, 2015, 36(10): 262)
[19] Zhou J H, Guan K Z.Theflowstressofalloystructuralsteelsathightemperature andhigh strain rate[J]. Acta Metall. Sin., 1986, 22(1): 123(周纪华, 管克智. 高温高速下合金结构钢流动应力研究[J].金属学报, 1986, 22(1): 123)
[20] Qi L, Zhao Z Z, Zhao A M.High temperature deformation behavior of X100 pipeline steel[J].J.Wuhan Univ. Sci. Technol., 2012, 35(3): 178(齐亮, 赵征志, 赵爱民. X100管线钢的高温变形力学行为[J].武汉科技大学学报, 2012, 35(3): 178)
[21] Wen D X, Lin Y C, Li H B, et al.Hot deformation behavior and processing map of a typical Ni-based superalloy[J]. Mater. Sci.Eng. A, 2014, (591): 183
[22] Mejía I, Reyes Calderón F, Cabrera J M.Modeling the hot flow behavior of a Fe-22Mn-0.41C-1.6Al-1.4Si TWIPsteel microalloyed with Ti, V and Nb[J].Mater. Sci. Eng. A, 2015, (644): 374
[23] Bergstr?m Y.A dislocation model for the stress-strain behavior of polycrystalline α-Fe with special emphasis on the variation of the densities of mobile and immobile dislocations[J]. Mater. Sci. Eng. A, 1970, 5(4): 193
[24] Yoshie A, Fujita T, Fujioka M, et al.Formulation of the Decrease in Dislocation Density of Deformed Austenite Due to Static Recovery and Recrystallization[J]. ISIJ Int., 1996, 36(4): 474
[25] Xu S J, Shi C S, Zhao N Q, et al.Dynamic recrystallization phenomenon in hot-working process by multi-phase-field model[J].Acta Phys. Sin., 2012, 61(11): 116101(徐树杰, 师春生, 赵乃勤等. 热加工过程中动态再结晶现象的多相场研究[J]. 物理学报, 2012, 61(11): 116101)
[26] Lin Y C, Chen X.A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J]. Mater. Des., 2011, 32(4): 1733
[27] Yanagida A, Liu J, Yanagimoto J.Flow curve determination for metal under dynamic recrystallization using inverse analysis[J].Mater. Trans., 2003, 44(11): 2303
[28] Ryan N D, Mcqueen H J.Dynamic Softening Mechanisms in 304 Austenitic Stainless Steel[J]. Can. Metall. Q., 1990, 29(2): 147
[29] Meckingh, Kocksu F.Kinetics of Flow and Strain-Hardening[J].Acta Metallurgical, 1981, 29(11): 1865
[30] Poliak E I, Jonas J J.A One-Parmenter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization[J]. Acta Mater.,1996, 44(1): 127
[31] Najafizadeh A, Jonas J J.Predicting the critical stress for initiation of dynamic recrystallization[J]. ISIJ Int., 2006, 46(11): 1679
[32] Haghdada N, Martin D, Hodgson P.Physically-based constitutive modelling of hot deformation behavior in a LDX 2101 duplex stainless steel[J]. Mater. Des., 2016, (106): 420
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!