Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (4): 267-273    DOI: 10.11901/1005.3093.2016.274
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Properties of Oxygen Electrode Catalyst (Co, N)/C
Huihua WANG1,2, Bin GE1, Lijuan SU1, Tianpeng QU1, Deyong WANG1, Zhenhui KANG2()
1 Shagang School of Iron and Steel, Soochow University, Suzhou 215021,China
2 Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215021,China;
Cite this article: 

Huihua WANG, Bin GE, Lijuan SU, Tianpeng QU, Deyong WANG, Zhenhui KANG. Preparation and Properties of Oxygen Electrode Catalyst (Co, N)/C. Chinese Journal of Materials Research, 2017, 31(4): 267-273.

Download:  HTML  PDF(4747KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nano-catalyst of (Co, N)/C has been successfully synthesized by solvothermal method using Co(Ac)2, NH3H2O and nano-carbon powder as starting materials. The results show that the oxygen reduction reaction (ORR) activity of (Co, N)/C is better than that of single nitrogen-doped or cobalt-doped nano-carbon powder in terms of the onset potential (-0.08 V) and peak potential (-0.165 V), which is comparable to the commercial catalyst Pt-C. The electron-transferred number of (Co, N)/C for ORR is about 3.59, which is close to the first order reaction kinetics of ORR (n=4). The intermediate product of H2O2 produced from the ORR takes up about 25%. The (Co, N)/C catalyst also exhibits better methanol durability and stability comparing to the commercial Pt-C (20% Pt). Bonds of N-(C)2, C-N-C and Co-C are the main active units of the catalyst and Co3O4 nano-particles can cooperatively improve the ability of catalyst.

Key words:  metal-air batteries      (Co,N)/C nano catalyst      ORR      onset potential      doping     
Received:  20 May 2016     
ZTFLH:  TM911  
Fund: Supported by National Natural Science Foundation of China (Nos.51422207, 51604179 & 51674172) and Natural Science Foundation of Jiangsu Province (Nos.BK20140346 & BK20150334)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.274     OR     https://www.cjmr.org/EN/Y2017/V31/I4/267

Fig.1  TEM and HRTEM images of C dots and (Co, N)/C catalyst
Fig.2  CV and LSV analysis of Co and (or) N doped catalysts
Fig.3  Results for the rotating disk electrode (RDE) voltammograms of the (Co, N)/C at various rotation speeds (a) and the Koutecky-Levich plots of J -1 vs. ω -1/2 of the (Co, N)/C at potentials of -0.7 V, -0.8 and -0.9 V (b)
Fig.4  Rotating ring-disk electrode (RRDE) linear sweep voltammogram (LSV) curves for Co/N/C with a rotation rate of 1600 rpm and H2O2 yields based on the RRDE data
Fig.5  (a) Cyclic voltammograms of (Co, N)/C catalyst in 0.1 mol/L KOH with or without 0.5 mol/L methanol and (b) current-time (i-t) curves of (Co, N)/C and Pt/C catalysts at -0.4 V in 0.1 mol/L KOH solution for 10 h
Fig.6  XPS and high resoulution analysis of (Co, N)/C catalysts
[1] Wang Y, Zhang L M, Hu T J.Progress in Oxygen Reduction Reaction Electrocatalysts for Metal-Air Batteries[J], Acta Chim. Sinica,2015,73: 316(王瀛,张丽敏,胡天军. 金属空气电池阴极氧还原催化剂研究进展[J], 化学学报,2015, 73: 316)
[2] Zhu M J, Yuan Z S, Sang L, et al.Research progresses of metal/air batteries[J], Power Technol., 2012, 36(12): 1953(朱明骏, 袁振善, 桑林等. 金属/空气电池的研究进展[J], 电源技术, 2012, 36(12): 1953)
[3] Zhao S Y, Liu J, Li C X, et al.Tunable-ternary (N, P, B)-doped porous nanocarbon and their catalytic properties for oxygen reduction reaction[J], Acs Appl. Mater. Inter., 2014, 6(24): 22297
[4] Yang Y M, Liu J, Han Y Z, et al.Porous cobalt, nitrogen-codoped carbon nanostructures from carbon quantum dots and VB12 and their catalytic properties for oxygen reduction[J], Phys. Chem. Chem. Phys., 2014, 16: 2535
[5] Li C X, Yang M M, Liu R H, et al.Phosphorous-doped macroporous carbon spheres for high efficiency selective oxidation of cyclooctene by air[J], Rsc Adv., 2014, 4(43): 22419
[6] Han Y Z, Tang D, Yang Y M, et al.Non-metal single/dual doped carbon quantum dots: a general flame synthetic method and electro-catalytic properties[J], Nanoscale, 2015, 7: 5955
[7] Zhao S Y, Li C X, Liu J, et al.Carbon quantum dots/SnO2-Co3O4 composite for highly efficient electrochemical water oxidation[J], Carbon, 2015, 92: 64
[8] Yang Y M, Liu J, Guo S J, et al.Nickel nanoparticle/carbon quantum dot hybrid as efficient electrocatalyst for hydrogen evolution under alkaline condition[J], J. Mater. Chem. A, 2015, 3(36): 18598
[9] Zhang C Z, Hao R, Han Y, et al.Iron phthalocyanin and nitrogen-doped graphene composite as a novel non-precious catalyst for the oxygen reduction reaction[J], Nanoscale, 2012, 4: 7326
[10] Zhai Y L, Zhu C Z, Wang E, et al.Energetic carbon-based hybrids: green and facile synthesis from soy milk and extraordinary electrocatalytic activity towards ORR[J], Nanoscale, 2014, 6: 2964
[11] Geng D S, Chen Y, Chen Y G, et al.High oxygen-reduction activity and durability of nitrogen-doped graphene[J], Energ. Environ. Sci., 2011, 4(3): 760
[12] Liang H Y, Li Y G, Wang H L, et al.Co3O4 Nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J], Nat. Mater., 2011, 10: 780
[1] JIANG Menglei, DAI Binbin, CHEN Liang, LIU Hui, MIN Shiling, YANG Fan, HOU Juan. Effect of Building Dimensions by Selective Laser Melting on Pitting Properties of 304L Stainless Steel[J]. 材料研究学报, 2023, 37(5): 353-361.
[2] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
[3] YANG Baolei, LIU Tingguang, SU Xianglin, FAN Yu, QIU Liang, LU Yonghao. Effect of Thermal Aging on Mechanical Properties and Intergranular Corrosion Resistance of 316LN[J]. 材料研究学报, 2023, 37(5): 381-390.
[4] LI Pengyu, LIU Zitong, KANG Shumei, CHEN Shanshan. Effect of Plasma Treatment on Performance of Polybutylene Adipate Coating on Biomedical AZ31 Mg-alloy[J]. 材料研究学报, 2023, 37(4): 271-280.
[5] LIAO Hongyu, JIA Yongxin, SU Ruiming, LI Guanglong, QU Yingdong, LI Rongde. Effect of Retrogression Times on Microstructure and Corrosion Resistance of 2024 Aluminum Alloy[J]. 材料研究学报, 2023, 37(4): 264-270.
[6] LIU Huan, LI Xingfu, YANG Yi, LI Cong, FU Zhengrong, BAI Yunhua, ZHANG Zhenghong, ZHU Xinkun. Room Temperature Work-Hardenning Behavior of a Novel Sandwich Sheet of Cu-Al Alloy with Gradient Structure Surfaces on Both Sides[J]. 材料研究学报, 2023, 37(2): 95-101.
[7] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[8] CHEN Jie, LI Hongying, ZHOU Wenhao, ZHANG Qingxue, TANG Wei, LIU Dan. Effect of Heat Input on Low Temperature Toughness and Corrosion Resistance of Q1100 Steel Welded Joints[J]. 材料研究学报, 2022, 36(8): 617-627.
[9] CAI Yusheng, HAN Hongzhi, REN Dechun, JI Haibin, LEI Jiafeng. Effect of Chemical Etching Process on Surface Roughness of TC4 Ti-alloy Fabricated by Laser Selective Melting[J]. 材料研究学报, 2022, 36(6): 435-442.
[10] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[11] LI Yuanyuan, ZENG Hanlu, PU Hongzheng, JIANG Mingzhu, WANG Zhongming, YANG Yimeng, GONG Xiangnan. Photocatalytic Degradation of Tetracycline by Si Doped Li2SnO3[J]. 材料研究学报, 2022, 36(3): 206-212.
[12] JI Jinpeng, LI Guohui, GENG Fengxia. Mn-doped Co-Al LDHs and its Potential Use for Overall Water Splitting[J]. 材料研究学报, 2022, 36(2): 140-146.
[13] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[14] JING Qian, CAO Han, LIU Fangyuan, XI Huijuan, LI Chaoxiang, SHAO Yunhang, CAO Meiwen, XIA Yongqing, WANG Shengjie. Preparation and Photocatalytic Property of Iron-doped Titanium Dioxide Nanomaterials[J]. 材料研究学报, 2022, 36(11): 862-870.
[15] SONG Jianyu, LI Xiang, WANG Qian, SHEN Longhai, QI Dongli, FENG Yu, CHEN Jianjin. Effect of Magnetic Field Direction on Suede Structure of Alkaline Solution Corroded Polysilicon[J]. 材料研究学报, 2021, 35(9): 682-688.
No Suggested Reading articles found!