Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (9): 682-688    DOI: 10.11901/1005.3093.2020.532
ARTICLES Current Issue | Archive | Adv Search |
Effect of Magnetic Field Direction on Suede Structure of Alkaline Solution Corroded Polysilicon
SONG Jianyu, LI Xiang, WANG Qian, SHEN Longhai, QI Dongli, FENG Yu(), CHEN Jianjin
School of Science, Shenyang Ligong University, Shenyang 110159, China
Cite this article: 

SONG Jianyu, LI Xiang, WANG Qian, SHEN Longhai, QI Dongli, FENG Yu, CHEN Jianjin. Effect of Magnetic Field Direction on Suede Structure of Alkaline Solution Corroded Polysilicon. Chinese Journal of Materials Research, 2021, 35(9): 682-688.

Download:  HTML  PDF(3798KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The surface suede texture of polysilicon wafer was prepared via NaOH solution etching process. The effect of direction (to which the wafer parallel or perpendicular) and intensity (0, 2 or 4T) of the applied magnetic field on the surface texture of polysilicon wafer was investigated by means of weight loss measurement, Olympus LEXT OLS4100 confocal microscope, ocean Optics USB4000 spectrometer and WT-1200 silicon wafer tester. The results show that with the increase of magnetics intensity the corrosion degree of polysilicon wafer increases, and that the suede texture becomes uniform and finer, whereas the reflectivity decreases. With the same applied magnetics intensity, the motion direction of OH- ions along the magnetic field direction in the alkali solution were not affected by the magnetic field force, however, the Lorenz force generated by the magnetic field acts on OH- ions, when who's motion direction is not exactly in line with the direction of the magnetic field, which then resulted in stronger corrosion for the silicon wafer placed perpendicular to the magnetic field direction, in consequence, the wafer presents much finer in suede texture and stratified structure with longer subatomic lifetime and lower reflectivity, peculiarly the applied magnetics intensity of 4T could make the reflectivity of the wafer lower to 14.5%. In fact, the surface reflectivity of the polysilicon wafer can be significantly reduced when the polysilicon wafer placed perpendicular to the direction of applied magnetic field during the preparation of surface suede texture with the NaOH solution etching process.

Key words:  inorganic non-metallic materials      magnetic field direction      alkali corrosion      polysilicon      lorentz force      suede structure     
Received:  17 December 2020     
ZTFLH:  TM914.4  
Fund: the Natural Science Foundation Guidance Plan Project of Liaoning Province(2019-ZD-0254)
About author:  FENG Yu, Tel: 15141001057, E-mail: fyudxxmsn@hotmail.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.532     OR     https://www.cjmr.org/EN/Y2021/V35/I9/682

Fig.1  Morphology (a) and three-dimensional surface height (b) of Polysilicon treated in zero magnetic field
Fig.2  Morphology (a and c) and three-dimensional surface height (b and d) of Polysilicon treated in 2T magnetic field
Fig.3  Morphology (a and c) and three-dimensional surface height (b and d) of Polysilicon treated in 4T magnetic field
Fig.4  Corrosive degree of Polysilicon treated in different magnetic field
Fig.5  Optical reflectivity of Polysilicon treated in different magnetic field
Fig.6  Minority carrier lifetime of Polysilicon treated in different magnetic field
1 Zhou Z Z, Wu Z, Feng K P. A review on surface texturing technology for multicrysstalline silion [J]. Materials Reports, 2015,29(5): 55
周兆忠, 吴喆, 冯凯萍. 多晶硅表面制绒技术研究现状 [J]. 材料导报, 2015, 29(5): 55
2 Zechner C, Hahn G, Jooss W, et al. Systematic study towards high efficiency multicrystalline silicon solar cells with mechanical surface texturization[C]//Conference Record of the 1997 IEEE 26th Photovoltaic Specialists Conference. Anaheim, 1997: 243
3 Liu Z, Niu Y C, Jiang Y S, et al. Study on electrochemical etching of diamond wire sawn polycrystalline silicon wafer by double-bath method in KOH solution [J]. Contemporary Chemical Industry, 2019, 12: 2808
刘政, 牛玉超, 姜言森等. 双槽法KOH溶液电化学刻蚀金刚线切割多晶硅片的研究 [J]. 当代化工, 2019, 12: 2808
4 Dobrzanski L A, Drygala A, Panek P, et al. Development of the laser method of multicrystalline silicon surface texturization [J]. Archives of Materials Science and Engineering, 2009, 38(1): 5
5 Dobrzanski L A, Drygala A. Laser texturization in technology of multicrystalline silicon solar cells[J]. Journal of Achievements in Materials and Manufacturing Engineering, 2008, 29(1): 7
6 Wang X M, Zhao R Q, Shen H, et al. Laser surface texturation of multicrystalline silicon for solar cell [J]. Laser and Optoelectronics Progress, 2010, 47(1): 1
王学孟, 赵汝强, 沈辉等. 用于太阳能电池的多晶硅激光表面织构化研究 [J]. 激光与光电子学进展, 2010, 47(1): 1
7 Jia Z F,Song J Y, Zhao W Y. Influence of NaOH solution concentration to the surface texture of multicrystalline silicon by Laser ablation[J]. Journal of Jinggangshan University(Natural Science), 2019, 40(2): 83
贾子凡, 宋建宇, 肇伟懿. NaOH溶液浓度对激光刻蚀多晶硅片表面织构的影响 [J]. 井冈山大学学报(自然科学版), 2019, 40(2): 83
8 Yoo J, Yu G, Yi J. Large-area multicrystalline silicon solar cell fabrication using reactive ion etching (RIE) [J]. Solar Energy Materials and Solar Cells, 2011, 95(1): 2
9 Qian Y, Feng S M. Study on micro-structure of polycrystalline silicon surface etched uing NaNO3 [J]. Semiconductor Optoelectronics, 2012, 33(1): 87
钱勇, 冯仕猛. 亚硝酸钠刻蚀液对多晶硅表面陷阱坑形貌的影响. 半导体光电, 2012, 33(1): 87
10 Bauer J, Wagner J M, Lotnyk A, et al. Hot spots in multicrystalline silicon solar cells: avalanche breakdown due to etch pits [J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2009, 3(2-3): 40
11 Li Z C, Zhao L, Diao H W, et al. Study on antireflection effect of electrochemical corrosion of polysilicon substrate [J]. Solar Energy, 2013(2): 54
李兆辰, 赵雷, 刁宏伟等. 电化学腐蚀多晶硅衬底减反射效果研究 [J]. 太阳能, 2013(2): 54
12 Wu X W, Li J Y, Tan Y. Technology of preparing diamond wire cut multicrystallinesilicon wafer texture surface [J]. Journal of Inorganic Materials, 2017, 32(9):985
武晓玮, 李佳艳, 谭毅. 金刚石线锯切割多晶硅片表面制绒工艺研究 [J]. 无机材料学报, 2017, 32(9): 985
13 Gangopadhyay U, Dhungel S K, Kim K, et al. Novel low cost chemical texturing for very large area industrial multi-crystalline silicon solar cells [J]. Semiconductor Science and Technology, 2005, 20(9): 938
14 Wang K X, Feng S M, Xu H T, et al. Experimental study on microstructure of polycrystalline silicon with alkali etching [J]. Scientia Sinica(Technologica), 2012, 42(6): 643
王坤霞, 冯仕猛, 徐华天等. 碱液刻蚀的多晶硅不同晶面微结构实验研究 [J]. 中国科学: 技术科学, 2012, 42(6): 643
15 Chang X Y. Surface treatment of polycrystalline silicon and study on heterojunction solar cell [D]. Tianjin: Hebei University of Technology, 2017
常雪岩. 多晶硅表面处理及异质结太阳能电池的研究 [D]. 天津: 河北工业大学, 2017
16 Abburi M, Bostrm T, Olefjord I. Electrochemical isotropic texturing of mc-Si wafers in KOH solution [J]. Materials Chemistry and Physics, 2013, 139(2-3): 756
17 Kuang G L, Pi L. Scientific issues under high magnetic field. Chin Sci Bull [J]. Chinese Science Bulletin, 2016, 61(17): 1940
匡光力, 皮雳. 强磁场下的科学问题 [J]. 科学通报, 2016, 61(17): 1940
18 Cai S W, Ning F, Tang Y J, et al. Effect of magnetic field on anodic dissolution of iron in sodium perchlorate solution at different potentials [J]. Corrosion and Protection, 2020, 41(8): 1
蔡爽巍, 宁飞, 唐元杰等. 磁场对铁在不同电位高氯酸钠溶液中阳极溶解的影响 [J]. 腐蚀与防护, 2020, 41(8): 1
19 Zhao J, Wang T P, Zhang H H. Effect of SDBS Coupled with Magnetic Field on Corrosion Inhibition Performance and Specific Capacitance of Anodic Aluminum Foil. Materials Reports, 2020, 34(06): 6156
赵静, 王天鹏, 张淮浩. 磁场作用下十二烷基苯磺酸钠对阳极铝箔的缓蚀性能及比电容的影响 [J]. 材料导报, 2020, 34(06): 6156
20 Song J Y, Zhao W Y, Qi D L, et al. Effect of high magnetic field on surface texture of alkaline solution corroded polysilicon [J]. Surface Technology, 2020, 49(7): 120
宋建宇, 肇伟懿, 齐东丽等. 强磁场对碱液腐蚀制备多晶硅表面织构的影响 [J]. 表面技术, 2020, 49(7): 120
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!