Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (6): 422-428    DOI: 10.11901/1005.3093.2015.768
Orginal Article Current Issue | Archive | Adv Search |
Influence of SiO2 Particles on Electrochemical Characteristics of Carbon Steel
Aijiao LI,Yanhua WANG(),Lian ZHONG,Jia WANG,Lin FENG,Peipei YANG
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
Cite this article: 

Aijiao LI,Yanhua WANG,Lian ZHONG,Jia WANG,Lin FENG,Peipei YANG. Influence of SiO2 Particles on Electrochemical Characteristics of Carbon Steel. Chinese Journal of Materials Research, 2017, 31(6): 422-428.

Download:  HTML  PDF(2366KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influence of inert solid particles SiO2 on electrochemical characteristics of carbon steel was studied by using the array electrode technique and the electrochemical impedance spectroscopy. It was found that the spreadability of droplets increased with the increase of the amount of SiO2,as well as the corrosion activity area.In addition, the impedance spectra showed two capacitive loops with the deposition of SiO2 particles, and the capacitive loop in the high frequencies was attributed to the blocking effect of the SiO2 particles. The corrosion behavior of carbon steel was affected by these two aspects, the spreadability of droplets and the blocking effect of the SiO2 particles. With the increase of the amount of SiO2, the average current value decreased firstly and then increased. There was a critical value in the deposition amount of SiO2 particles. When the amount was lower than the critical value, it could hinder corrosion. While, when the amount was higher than the critical value, it would accelerate corrosion owing to the expansion of droplets.

Key words:  materials failure and protection      spreadability      array electrode      deposition      SiO2 particles     
Received:  17 March 2016     
Fund: Supported by National Natural Science Foundation of China (No.51131005) and Promotive Research Fund Forexcellent Young and Middle-aged Scientists of Shandong Province (No.BS2012HZ021)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.768     OR     https://www.cjmr.org/EN/Y2017/V31/I6/422

Fig.1  Galvanic current distribution of Q235 steel under NaCl droplet after (a) 10 min, (b) 1 h, (c) 3 h, (d) 5 h
Fig.2  Galvanic current distribution of Q235 steel under NaCl droplet as a function of deposition: (a) 0.0000 mg/cm2, (b) 0.0010 mg/cm2, (c) 0.0100 mg/cm2, (d) 0.1000 mg/cm2, (e) 1.0000 mg/cm2
Fig.3  Variations of the spreadability A0 and the average current of carbon steel under NaCl droplet as a function of deposition
Fig.4  Impedance diagrams of Q235 steel under NaCl droplet as a function of deposition (a) Nyquist plot (b) Bode plot
Fig.5  Equivalent circuit models of impedance diagrams of Q235 steel under NaCl droplet as a function of deposition (a) blank (b) deposition
Fig.6  Variations of Rct and R1 as a function of deposition
Fig.7  Variations of the cathodic limiting current density of carbon steel under NaCl droplet at -800 mV as a function of deposition
Fig.8  The schematic diagram of corrosion mechanism of carbon steel under NaCl droplet as a function of deposition:(a) blank, (b) below the critical value, (c) above the critical value
[1] LIU Y C, HE H.Analysis of chemical composition of atmospheric particles[J]. Progress in Chemistry, 2007, 19(10): 1620
[1] (刘永春, 贺泓. 大气颗粒物化学组成分析[J]. 化学进展, 2007, 19(10): 1620)
[2] Shengxi Li, L. H. H. Aerosol Salt Particle Deposition on Metals Exposed to Marine Environments: A Study Related to Marine Atmospheric Corrosion[J]. Journal of the Electrochemical Society, 2014, 161(5): 268
[3] Shengxi Li, L. H. H. Atmospheric corrosion initiation on steel from predeposited NaCl salt particles in high humidity atmospheres[J]. Corrosion Engineering, Science and Technology, 2010, 45(1): 49
[4] Shengxi Li, L. H. H. In situ Raman spectroscopic study of NaCl particle-induced marine atmospheric corrosion of carbon steel[J]. Journal of the Electrochemical Society, 2012, 159(4): 147
[5] ZHANG D D, ZHAO C Y, WANG C, et al.Atmospheric aerosols corrosion[J]. Journal of Chinese Society for Corrosion and Protection, 2015, 35(02): 91
[5] (张丹丹, 赵春英, 汪川等. 大气气溶胶腐蚀[J]. 中国腐蚀与防护学报, 2015, 35(02): 91)
[6] Soon-Chang Yoon, Jiyoung Kim.Influences of relative humidity on aerosol optical properties and aerosol radiative forcing during ACE-Asia[J]. Atmospheric Environment, 2006, 40: 4328
[7] Bohren C F, Huffman D R.Absorption and scattering of light by small particles[J]. John Wiley and Sons Inc, 1983, 82
[8] Derek E. Day, William C.Malm. Aerosol light scattering measurements as a function of relative humidity: a comparison between measurements made at three different sites[J]. Atmospheric Environment, 2001, 35: 5169
[9] G. A. Ferron, E. Karg, B. Busch, et al.Ambient particles at an urban, semi-urban and rural site in Central Europe: hygroscopic properties[J]. Atmospheric Environment, 2005, 39: 343
[10] A Osite, J Katkevich, A Viksna1, et al. Electrochemical impedance spectra of particulate matter and smoke,[J]. Materials Science and Engineering, 2011, 23: 1
[11] A. ASKEr S. B. LYON G.The effect of fly-ash particulates on the atmospheric corrosion of zinc and mild steel[J]. Corrosion Science, 199334(7): 1055
[12] W. H. J.Vernon. A laboratory study of the atmospheric corrosion of metals[J]. Trans. Farady. Soc., 1931, 255
[13] LIN Xueyan.Effect of atmospheric corrosion on electric contact reliability, [D]. Beijing: Beijing University of Posts and Telecommunications, 2009
[13] (林雪燕. 连接器触点表面的大气腐蚀[D]. 北京: 北京邮电大学,2009)
[14] GUO Rui, LIN Xueyan.Corrosion properties of the dust particles[J]. Electromechanical components, 2004, 24(1): 3
[14] (郭锐, 林雪燕. 尘土颗粒的腐蚀特性[J]. 机电元件, 2004, 24(1): 3)
[15] LV Ruixue, LIN Xueyan.Experimental research on simulation method of dust corrosion[A]. 2010the Chinese electronic society the 16th electronic components academic essays[C]. Jiangsu Kunshan, 2010
[15] (吕瑞雪, 林雪燕. 尘土腐蚀的实验室模拟方法[A]. 2010年中国电子学会第十六届电子元件学术年会论文集[C]. 江苏昆山, 2010)
[16] J. R. Walton, J. B. Johnson, G. C. Wood.Atmospheric Corrosion Initiation by Sulphur Dioxide and Particulate Matter II. Characterisation and corrosivity of individual particulate atmospheric pollutants[J]. British Corrosion Journal, 1982, 17(2): 65
[17] QU Qing, YAN Chuanwei, BAI Wei, et. al. Role of NaCl in the atmospheric corrosion of A3 steel[J]. Journal of Chinese Society for Corrosion and Protection, 2003, 23(3): 160
[17] (屈庆, 严川伟, 白玮等. NaCl在A3钢大气腐蚀中的作用[J]. 中国腐蚀与防护学报, 2003, 23(3): 160)
[18] WAN Ye, YAN Chuanwei, CAO Chunan.Atmospheric corrosion of A3 steel deposited with different salts[J]. Acta Phys-Chim. Sinica.,2004, 20(3): 659
[18] (万晔, 严川伟, 曹楚南. 可溶盐沉积对碳钢大气腐蚀的影响[J]. 物理化学学报, 2004, 20(3): 659)
[19] ZHANG Jibiao, WANG Jia, WANG Yanghua.The deliquescence and spreading of sea salt particles on carbon steel and atmospheric corrosion[J]. Marine Corrosion, 2005, 29(7): 17
[19] (张际标, 王佳, 王燕华. 海盐粒子沉积下碳钢的大气腐蚀初期行为[J]. 海洋科学, 2005, 29(7): 17)
[20] Bo Song, M. H. A. A. Effect of Temperature and Relative Humidity on the Impedance Degradation of Dust-Contaminated Electronics[J]. Journal of The Electrochemical Society, 2013, 160(3): 97
[21] XU R, WANG Y H, WANG J, et. al. Influence of spreadability of seawater droplet on electrochemical characteristics of carbon steel[J]. Chinese Journal of Materials Research, 2015, 29(02): 95
[21] (续冉, 王燕华, 王佳等. 海水液滴铺展因子对碳钢表面电化学特性的影响[J]. 材料研究学报, 2015, 29(02): 95)
[22] Shengxi Li, L. H. Hihara. Atmospheric-corrosion electrochemistry of NaCl droplets on carbon steel[J]. Journal of The Electrochemical Society, 2012, 159(11): 461
[23] Goldstein E M.The Corrosion and Oxidation of Metals: Scientific Principles and Practical Applications, Journal of Chemical Education, 1960, 12: 662
[24] Muster T.H., Bradbury A., Trinchi A., et. al.The atmospheric corrosion of zinc: The effects of salt concentration, droplet size and droplet shape[J]. Electrochimica Acta, 2011, 56(4): 1866
[25] FU X C, SHEN W X, YAO T T, et. al.Physical Chemistry: 2, the 5th Edition[M]. Beijing: Higher Education Press, 2006
[25] (傅献彩, 沈文霞, 姚天扬等, 物理化学(第五版下册)[M]. 北京: 高等教育出版社, 2006)
[26] Guan K S, Jiang Q P, Yin Y S.Super-Hydrophilicity of TiO2/SiO2/CeO2 Composite Thin Films[J]. Journal of the Chinese Rare Earth Society, 2003, 21(03): 291
[26] (关凯书, 姜秋鹏, 尹衍升. TiO2/SiO2/CeO2复合纳米薄膜超亲水性能的研究[J]. 中国稀土学报, 2003, 21(03): 291)
[27] Emilie Dubuisson, Philippe Lavie, Francis Dalard, et. al. Study of the atmospheric corrosion of galvanized steel in a micrometric electrolytic droplet[J]. Electrochemistry Communications, 2006, 8(6): 911
[28] JIANG Jing.The role of liquid dispersion in gas/liquid/solid multiphase corrosion systems[D]. Qingdao: Ocean University of China,2009
[28] (姜晶. 液相分散程度在气/液/固多相体系腐蚀过程中的作用[D]. 青岛: 中国海洋大学, 2009)
[29] JIANG J, WANG J.Effect of gas/liquid/solid three-phase boundary zone on cathodic process of metal corrosion[J]. Corrosion Science and Protection Technology, 2009, 21(02): 79
[29] (姜晶, 王佳. 气/液/固三相线界面区的性质在金属腐蚀阴极过程中的作用[J]. 腐蚀科学与防护技术, 2009, 21(02): 79)
[1] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] JI Hongmei, WANG Xu, LI Xiaowu. Comparative Investigations of in vitro Apatites Depositionin Nacre and Crossed-lamellar Structures in Mollusk Shells[J]. 材料研究学报, 2023, 37(4): 241-247.
[3] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[4] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[5] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[6] YIN Jie, HU Yuntao, LIU Hui, YANG Yifei, WANG Yifeng. Constructing Polyaniline/Alginate Film by Electrodeposition and Its Electrochemical Properties[J]. 材料研究学报, 2022, 36(4): 314-320.
[7] SHAO Siwu, ZHENG Yuting, AN Kang, HUANG Yabo, CHEN Liangxian, LIU Jinlong, WEI Junjun, LI Chengming. Progress on Application of Bias Technology for Preparation of Diamond Films[J]. 材料研究学报, 2022, 36(3): 161-174.
[8] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[9] CUI Li, SUN Lili, GUO Peng, MA Xin, WANG Shuyuan, WANG Aiying. Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK[J]. 材料研究学报, 2022, 36(11): 801-810.
[10] LI Xiuxian, QIU Wanqi, JIAO Dongling, ZHONG Xichun, LIU Zhongwu. Promotion Effect of α-Al2O3 Seeds on Low-temperature Deposition of α-Al2O3 Films by Reactive Sputtering[J]. 材料研究学报, 2022, 36(1): 8-12.
[11] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[12] TANG Changbin, NIU Hao, HUANG Ping, WANG Fei, ZHANG Yujie, XUE Juanqin. Electrosorption Characteristics of NF/PDMA /MnO2-Co Capacitor Electrode for Pb2+ in a Dilute Solution of Lead Ions[J]. 材料研究学报, 2021, 35(2): 115-127.
[13] LIU Zhufeng, HUANG Yaodong, YANG Xiao, HE Yuanjing, LI Zhaoqing, YAN Chunze. Preparation of Graphene/Ni-Cu Alloy Composite on Ni-Cu Alloy Template Made by Selective Laser Melting[J]. 材料研究学报, 2021, 35(1): 1-6.
[14] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[15] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
No Suggested Reading articles found!