Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (12): 903-908    DOI: 10.11901/1005.3093.2015.629
Orginal Article Current Issue | Archive | Adv Search |
Preparation of Micro-nano-sized Cu-Ag Core-shell Particles by a Quick-making Method and their Conductivity
Bin CAI,Zhejuan ZHANG(),Zhuo SUN
School of Physics and Materials Science, Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200062, China
Cite this article: 

Bin CAI,Zhejuan ZHANG,Zhuo SUN. Preparation of Micro-nano-sized Cu-Ag Core-shell Particles by a Quick-making Method and their Conductivity. Chinese Journal of Materials Research, 2016, 30(12): 903-908.

Download:  HTML  PDF(4527KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Micro- and nano-sized Cu and Ag core-shell particles were fabricated by a simple and quick-making method with copper micro-particles, gelatin and silver sulfate (Ag2SO4) as raw materials, and citric acid trisodium (SC) as reducing- and chelating-agent. The influence of SC and Ag2SO4 on the morphologies and oxidation resistance of Cu-Ag particles were investigated. The results showed that the dosage of SC directly affected the uniformity and morphology of the Ag coated Cu particles. The more the Ag2SO4 was used, the lower the conductive resistance was for the prepared particles. With dosages of 1.5 g and 8.0 g for SC and Ag2SO4respectively, the Cu- particles could be covered by Ag nanoparticles completely to form core-shell structured Cu-Ag particles, thereafter, the electrical resistance of sheets made of which can reach as low as 1.1Ω.

Key words:  metallic materials      Ag coated Cu particles      core-shell particles      chelating agent      conductivity     
Received:  17 November 2015     
Fund: *Supported by National Natural Science Foundation of China No.11204082, Shanghai Natural Fund Project No.16ZR1410700, School-enterprise Cooperation in Minhang District of Shanghai No. 2015MH218 and Postgraduate Scientific Research and Innovative Practice Funding Program of ECNU No. YJSKC2015-32.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.629     OR     https://www.cjmr.org/EN/Y2016/V30/I12/903

Fig.1  Size distribution (a) and SEM image (b) of the raw Cu particles
Fig.2  SEM images of Cu-Ag particles prepared with different dosages of SC (a) 0 g; (b) 0.5 g; (c) 1.5 g; (d) 6.0 g
Fig.3  XRD patterns of the Cu-Ag powder prepared with 1.5 g SC
Fig.4  Cross-sectional SEM images (a) and Cross-sectional EDS analysis (b) of the Cu-Ag sample prepared with 1.5 g SC
Fig.5  SEM images of the Cu-Ag particles prepared with different dosages of Ag2SO4 (a) 3.0 g, (b) 4.0 g, (c) 5.0 g, (d) 8.0 g and (e) 11.7 g
Fig.6  EDS proportion of Ag in Cu-Ag production with different dosages of Ag2SO4
Sample Dosage of
SC/g
Dosage of
Ag2SO4/g
Sheet
resistance/(Ω/□)
(a) 0 11.7 6.0
(b) 0.5 11.7 0.5
(c) 1.5 3.0 -
(d) 1.5 4.0 200.0
(e) 1.5 5.0 30.6
(f) 1.5 8.0 1.1
(g) 1.5 11.7 0.4
(h) 6.0 11.7 4.5
Table 1  Sheet resistance of Cu-Ag samples prepared with different dosages of SC and Ag2SO4
Fig.7  SEM images of Cu-Ag particles prepared with 8.0 g Ag2SO4 after being heated under 150℃ for 30 min
1 D. S. Jung, H. M. Lee, Y. C. Kang, S. B. Park, Air-stable silver-coated copper particles ofsub-micrometer size, J. Colloid Interf. Sci., 364(2), 574(2011)
2 E. B. Choi, J. H. Lee, Ethylene glycol-based Ag plating for the wet chemical fabrication of onemicrometer Cu/Ag core/shell particles, J. Alloys Compd., 643, S231(2015)
3 Cao Xiaoguo, Zhang Haiyan, Huang Huiping, Preparation and oxidation-resistant property research of micron Cu-Ag pimetallicpowder, Materials Review, 10, 151(2006)
3 (曹晓国, 张海燕, 黄惠平, 微米级铜银双金属粉的制备及其抗氧化性能研究, 材料导报, 10, 151(2006))
4 H. T. Hai, H.Takamura, J. Koike.Oxidation behavior of Cu-Ag core-shell particles for solar cell applications. J. Alloys Compd., 564, 71(2013)
5 Y. H.Peng, C. H. Yang, K. T. Chen, S. R. Popuri, C. H. Lee, B. S. Tang, Study on synthesis of ultrafine Cu-Ag core-shell powders with high electricalconductivity, Appl. Surf. Sci., 263, 38(2012)
6 V. Mancie, C. Rousse-Bertrand, J. Dille, J. Michel, P. Fricoteaux, Sono and electrochemical synthesis and characterization of copper core-silvershell nanoparticles, Ultrason. Sonochem., 17(4), 690(2010)
7 Hu Lei, Zhu Xiaoyun, Plating Layer Structure and Property of Silver-CoatedCopper Power with High Silver Content, Rare Metal Materials and Engineering, 11, 2017(2012)
7 (胡磊, 朱晓云, 高银含量银包铜粉镀层结构及性能研究, 稀有金属材料与工程, 11, 2017(2012))
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!