Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (10): 753-758    DOI: 10.11901/1005.3093.2015.630
ARTICLES Current Issue | Archive | Adv Search |
Friction and Wear Properties of Al2O3-based Micro-nano-composite Ceramic Tool Materials
Zengbin YIN(),Juntang YUAN,Lei HUANG,Zhenhua WANG
School of Mechanical Engineering, NanjingUniversity of Science and Technology, Nanjing 210094, China
Cite this article: 

Zengbin YIN,Juntang YUAN,Lei HUANG,Zhenhua WANG. Friction and Wear Properties of Al2O3-based Micro-nano-composite Ceramic Tool Materials. Chinese Journal of Materials Research, 2016, 30(10): 753-758.

Download:  HTML 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The friction properties and wear mechanisms of two types of Al2O3-based micro-nano-composite ceramic tool materials were investigated by sliding wear against austenitic stainless steel 1Cr18Ni9Ti. The results indicate that the friction coefficient decreased but the wear rate increased with the increase of load and sliding speedfor the two materials. In comparison with Al2O3-(W, Ti)Cμ-TiCn, the Al2O3-TiCμ-TiCn ceramic tool material exhibited better wear resistance , thus was much suitable for cutting austenitic stainless steel. In the sliding process, the steel reacted with Al2O3to form FeOAl2O3, which made the metal transfer to the ceramic disk, and couldeffectively decreased the friction coefficient. The main wear mechanism of Al2O3-TiCμ-TiCn ceramic tool material is adhesive wear, while adhesion and fracture for the Al2O3-(W, Ti)Cμ-TiCn.

Key words:  inorganic non-metallic materials      Al2O3-based ceramic      friction property      wear mechanism      cutting tool     
Received:  17 December 2015     
Fund: *Supported by National Natural Science Foundation of China No. 51505227, Natural Science Foundation of Jiangsu Province of China No. BK20150783 and the Fundamental Research Funds for the Central Universities No. 30915118809.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.630     OR     https://www.cjmr.org/EN/Y2016/V30/I10/753

Composite Al2O3
(0.5 μm)
TiC
(0.5 μm)
(W,Ti)C
(1.5 μm)
TiC
(40 nm)
Co
(2 μm)
ATTC 56 35 6 3
AWTC 57 33 6 4
Table 1  Components of the Al2O3-based composite ceramics
Fig.1  Schematic diagram of friction and wear test
Materials Elasticity
modulus
(GPa)
Flexural
strength
(MPa)
Fracture
toughness
(MPam1/2)
Hardness Thermal conductivity
(W/(mK))
ATTC 424 916 8.3 18 HRC 9.8
AWTC 463 882 7.2 19 HRC 13
Stainless steel 197 534 189 HBS 16
Table 2  Properties of ceramic tool materials and counterpart material at room temperature
Fig.2  Friction coefficient vs. sliding time at different loads (a) ATTC and (b) AWTC
Fig.3  Friction coefficient vs. sliding time at different sliding speeds (a) ATTC and (b) AWTC
Speed ATTC AWTC
5 N 15 N 25 N 5 N 15 N 25 N
40 m/min 0.691 0.568 0.557 0.696 0.527 0.519
60 m/min 0.628 0.527 0.514 0.632 0.513 0.507
80 m/min 0.549 0.513 0.510 0.582 0.510 0.500
Table 3  Friction coefficient at different combinations of load and sliding speed
Fig.4  SEM morphologies of worn surfaces of ATTC (a) and AWTC (b)
Fig.5  SEM morphologies of worn surface of AWTC after sliding for 5 min at 5 N (a), 15 N (b) and 25 N (c)
Speed ATTC AWTC
5 N 15 N 25 N 5 N 15 N 25 N
40 m/min 1.694 2.695 6.429 3.454 4.856 7.694
60 m/min 7.854 8.601 10.320 8.620 9.689 11.970
80 m/min 10.591 11.654 18.657 10.471 11.800 20.642
Table 4  Wear rate (10-6×mm3/Nm) at different combinations of load and sliding speed
Fig.6  SEM morphologies of worn surfaces of ATTC after sliding for 5 min at 5 N, 40 m/min (a), EDS of area 1 (b) and EDS of area 2 (c)
Fig.7  SEM morphologies of worn surfaces of AWTC after sliding for 5 min
1 Z. B. Yin, C. Z. Huang, B. Zou, H. L. Liu, H. T. Zhu, J. Wang, Effects of particulate metallic phase on microstructure and mechanical properties of carbide reinforced alumina ceramic tool materials, Ceramics International, 40, 2809(2014)
2 Z. B. Yin, C. Z. Huang, B. Zou, H. L. Liu, H. T. Zhu, J. Wang, Study of the mechanical properties, strengthening and toughening mechanisms of Al2O3/TiC micro-nano-composite ceramic tool material, Materials Science and Engineering A, 577, 9(2013)
3 X. Y. Teng, H. L. Liu, C. Z. Huang, Effect of Al2O3 particle size on the mechanical properties of alumina-based ceramics, Materials Science and Engineering A, 452, 545(2007)
4 Y. H. Zhou, X. Ai, J. Zhao, X. L. Yuan, Q. Xue, Mechanical properties and microstructure of Al2O3/(W, Ti)C nanocomposite, Key Engineering Material, 368-372, 717(2008)
5 A. G. Evans, D. B. Marshall, Wear mechanisms in ceramics, Fundamentals of Friction and Wear Materials, 23, 439(1980)
6 SONG Peilong, YANG Xuefeng, WANG Shouren, YANG Liying, Mechanical and tribological properties of laminated Al2O3/TiC-Al2O3/TiC/CaF2self-lubrication ceramic material, Chinese Journal of Materials Research, 26(5), 538(2012)
6 (宋培龙, 杨雪锋, 王守仁, 杨丽颖, Al2O3/TiC-Al2O3/TiC/CaF2自润滑叠层陶瓷的机械和摩擦磨损性能, 材料研究学报, 26(5), 538(2012))
7 J. X. Deng, Z. L. Ding, J. Zhao, J. F. Li, T. K. Cao, Unlubricated friction and wear behaviors of various alumina-based ceramic composites against cemented carbide, Ceramics International, 32, 499(2006)
8 J. X. Deng, X. Ai, Z. Q. Li, Friction and wear behavior of Al2O3/TiB2 composite against cemented carbide in various atmospheres at elevated temperature, Wear, 195, 128(1996)
9 A. J. Perez-Unzueta, J. H. Beynon, Effects of surrounding atmosphere on the wear of sintered alumina, Wear, 146, 179(1991)
10 ZHANG Hui, DENG Jianxin, WU Ze, AI Xing, ZHAO Jun, Friction and wear behavior of Al2O3/TiC ceramic tool material at elevated temperature, Tribology, 31(4), 369(2011)
10 (张辉, 邓建新, 吴泽, 艾兴, 赵军, Al2O3/TiC基陶瓷刀具材料的高温摩擦磨损性能研究, 摩擦学学报, 31(4), 369(2011))
11 H. Y. Liu, M. Fine, Tribological behavior of SiC whisker/Al2O3 composites against carburized 8620 steel in lubrication sliding, Journal of American Ceramic Society, 74, 2224(1991)
12 J. X. Deng, H. Zhang, Z. Wu, Y. S. Lian, Y. Q. Xing, S. P. Li, Unlubricated friction and wear behaviors of Al2O3/TiC ceramic cutting tool materials from high temperature tribological tests, International Journal of Refractory Metals and Hard Materials, 35, 17(2012)
13 A. Koval?íková, J. Balko, C. Balázsi, P. Hvizdo?, J. Dusza, Influence of hBN content on mechanical and tribological properties of Si3N4/BN ceramic composites, Journal of European Ceramic Society, 34, 3319(2014)
14 A. G. Khurshudov, M. Olsson, K. Kato, Tribology of unlubricated sliding contact of ceramic materials and amorphous carbon, Wear, 205, 101(1997)
15 A. G. Evans, D. B. Marshall,Fundamental of friction and wear of materials, (London, Springer, 1981) p. 439
16 K. H. ZumGahr, W. Bundschuh, B. Zimmerlin, Effect of grain size on friction and sliding wear of oxide ceramics, Wear, 162, 269(1993)
17 J. A. Kirk, W. D. Syniuta, Scanning electron microscopy and microprobe investigation of high speed sliding wear of alumina oxide, Wear, 27, 367(1974)
18 Y. P. Delgado, M. H. Staia, O. Malek, J. Vleugels, P. D. Baets, Friction and wear response of pulsed electric current sintered TiB2-B4C ceramic composite, Wear, 317, 104(2014)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] WANG Wei, PENG Yiqing, DING Shijie, CHANG Wenjuan, GAO Yuan, WANG Kuaishe. Tribological Properties of Graphite-based Solid Lubricating Coatings for Ti-6Al-4V Alloy at 500~800oC[J]. 材料研究学报, 2023, 37(6): 432-442.
[7] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[9] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
No Suggested Reading articles found!