Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (10): 745-752    DOI: 10.11901/1005.3093.2015.173
ARTICLES Current Issue | Archive | Adv Search |
Microstructural Evolution and Strengthening Mechanism of Al Alloy Matrix Composites by Applied High Pulsed Electromagnetic Field
Guirong LI(),Fangfang WANG,Rui ZHENG,Hongming WANG,Chao HUANG,Fei XUE,Yi ZHU
School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
Cite this article: 

Guirong LI,Fangfang WANG,Rui ZHENG,Hongming WANG,Chao HUANG,Fei XUE,Yi ZHU. Microstructural Evolution and Strengthening Mechanism of Al Alloy Matrix Composites by Applied High Pulsed Electromagnetic Field. Chinese Journal of Materials Research, 2016, 30(10): 745-752.

Download:  HTML 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nanometer sized Al2O3 reinforced Al-Zn-Mg-Cu matrix composites were subjected to treatments in high pulsed magnetic field with different magnetic induced intensity 2T, 3T and 4T. The results demonstrate that the residual stress arrives to a minimum of -1MPa by an applied 3T pulsed magnetic field, which decreased by 102.4% compared to that of the original composite. The applied magnetic field can relax the long range distance stresses between areas with dense and sparse dislocations respectively; Meanwhile, the magnetic field increases the mobility of dislocations and accelerate the release velocity of internal stress, then the residual stress is, thereafter, lowered. The tensile strength increased with the enhancement of magnetic induced intensity. By 4T magnetic field the introduced mass factor, which is a combined parameter to represent the tensile strength and elongation, was enhanced by 12.7% compared to that of the original composite. The high dislocation density is beneficial to the dislocation induced strengthening. Besides, an other important reason lies in that the applied magnetic field may facilitate the formation of metastable η'(MgZn2) phase as the main precipitates, which somewhat substitute the common η (MgZn2) phase. Thereby, the increase of η'(MgZn2) can improve the strength and toughness of composites. Furthermore,based on the first principle the density of electron spin state is calculated, which corresponds to the bonds formation process. By 2T magnetic field treatment, the fractograph of the composite exhibits the characteristic of ductile fracture that corresponds to a higher elongation of 9.3%, which is 12% higher than that of the original composite.

Key words:  aluminum matrix composite      pulsed high magnetic field      residual stress      tensile property     
Received:  08 December 2015     
Fund: *Supported by National Natural Science Foundation of China Nos. 51371091, 51001054 & 51174099, and Student Innovation Training Program of Jiangsu University.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.173     OR     https://www.cjmr.org/EN/Y2016/V30/I10/745

Elements Al Zn Mg Cu Zr Si Fe Mn Cr Ti
Composition 87.0 8.25 0.913 2.3 0.438 0.0692 0.227 0.008 0.0048 0.298
Table 1  Specific elements in Al-Zn-Mg-Cu aluminum matrix composites (mass fraction, %)
Fig.1  Schematic of pulsed magnetic field generator
Fig.2  Schematic of the tensile specimen at room temperature (unit: mm)
Fig.3  Effect of magnetic induced intensity on the residual stress of the composites
Fig.4  Sparse and dense areas of dislocation in composites
Fig.8  Schematic of Orowan dislocation strengthening mechanics (a) Typical dislocation circles; (b) annular dislocation forming process
Fig.5  Influence of force imposing on the dense and sparse areas of dislocation (a) Before force imposing; (b) possible changes after force imposing
Fig.6  Dislocation characteristic of dislocation at grain boundary Point A: Blocked dislocation; Point B: dislocation surmounting the grain boundary
Fig.7  Effect of magnetic induced intensity on the tensile strength and elongation of composites
Fig.9  Schematic of dynamic recrystallization to generate refined subgrains
Fig.10  Microstructure of 7055 aluminum alloy (a) B=0; (b) B≠0 (c) η phase; (d) η'phase
Fig.11  Crystal structure of MgZn2 and electron spin density of spin states during bonds formation (a) crystal structure of MgZn2; (b)combined density of spin state of Mg 3s, 3p and Zn14p; (c) density of spin state for Zn1 and Mg; (d) density of spin state forZn2 and Mg
Fig.12  Fracture morphology of composites subject to different pulses number (a) B=0T; (b) B=2T; (c) B=3T; (d) B=4T
1 ZHANG Jianjun, CHEN Zheng, WANG yongxin, LIU Bing, Gibbs free energy calculation of Al-Cu-Li alloy with the effect of electric field from electron level, Journal of Alloys and Compounds, 457(1), 526(2007)
2 WANG Hongming, LI Guirong, Effect of induction heat on initial solidification during electromagnetic continuous casting, J. Iron Steel Res. Int., 17(7), 13(2010)
3 WANG Hongming, LI Guirong, ZHAO Yutao, CHEN Gan, In situ fabrication and microstructure of Al2O3 particles reinforced aluminum matrix composites, Mat.Sci.Eng.A, 527(12), 2881(2010)
4 S. Vaucher, M. Stir, K. Ishizaki, J. M. Catala, R. Nicula, Reactive synthesis of Ti-Al intermetallics during microwave heating in an E-field, maximum, ThermochimicaActa, 522(1), 151(2011)
5 LI Guirong, ZHAO Yutao, DAI Qixun, ZHANG Hongjie, WANG Hongming, In-situ fabrication of particulate reinforced aluminum matrix composites under high- frequency pulsed electromagnetic field, J.Uni.Sci.Technol.Beijing, 14(5), 460(2007)
6 JIN Fangwei, REN Zhongming, REN Weili, DENG Kang, ZHONG Yunbo, Refinement of primary silicon in Al-18%Si alloy under gradient high magnetic fieled, Acter Metallurgica Sinica, 43(05), 521(2007)
6 (晋芳伟, 任忠鸣, 任维丽, 邓康, 钟云波, 梯度强磁场下Al-18%Si合金中初晶硅的细化, 金属学报, 43(05), 521(2007))
7 MIAO Runqi, Research on microstructures of magnesium alloys heat treated under high magnetic fields and the preparation of Mg-Ti thin film, PhD Thesis, Dalian University of Technology, 2013
7 (苗润琪, 强磁场下镁合金热处理组织研究及Mg-Ti薄膜制备, 博士学位论文, 大连理工大学, 2013.)
8 JIANG Bingzhi, YANG Jiangme, The general situation of the study of magnetic field effect of chemical reaction andprospects, Progress in Chemistry, (02), 15(1992)
8 (蒋秉植, 杨健美, 磁场效应影响化学反应研究的概况及前景, 化学进展, (02), 15(1992))
9 LI Guirong, WANG Hongming, YUAN Xueting, CAI Yun, Structural evolution and mechanism of particles reinforced aluminummatrix compositesimpacted by pulsed electromagnetic field, Chinese Journal of Materials Research, 27(4), 397(2013)
9 (李桂荣, 王宏明, 袁雪婷, 蔡云, 脉冲磁场处理颗粒增强铝基复合材料的组织演变, 材料研究学报, 27(4), 397(2013)
10 LI Guirong, WANG Hongming, YUAN Xueting, CAI Yu, ZHAO Yutao, WANG Junjie, Structure evolution and properties of 7055 aluminum alloywith cycle cryogenic treatment, Rare Metal Materials and Engineering, (42),251(2013)
10 (李桂荣, 王宏明, 袁雪婷, 蔡云, 赵玉涛, 王俊杰, 时效深冷循环处理7055铝合金的组织演变规律和性能特征, 稀有金属材料与工程, (42),251(2013))
11 LI Guirong, ZHANG Xunyin, ZHAO Yinan, YUAN Fei, ZHANG Tingwang, WANG Hongming, ZHAO Yutao, Microstructure of in situ Al3Ti0.4Zr0.6p/Al fabricated with electromagnetic field, Adv.Mater.Res, 284-286, 2280(2011)
12 WU Su, ZHAO Haiyan, LU Anli, FANG Huizhen, Micromechanism of reducing residual stress by low frequency alternating magnetic treatment, British Welding Journal, 32(01), 9(2002)
13 (吴甦, 赵海燕, 鹿安理, 方慧珍, 低频交变磁处理降低钢材内应力的微观机理, 焊接学报, 32(01), 9(2002))
13 WU Su, ZHAO Haiyan, LU Anli, AN Huizhen, TANG Fei, Micro-mechanism model of residual stress relaxation in steels by magnetic treatment, Tsinghua Science and Technology (Natural Science Edition), 42(02), 147(2002)
13 (吴甦, 赵海燕, 鹿安理, 方慧珍, 唐非, 磁处理降低钢中残余应力的微观机理模型, 清华大学学报(自然科学版) 42(02), 147(2002))
14 XU Xiaojing, SONG Tao, FAN Zhen, ZHANG Zhenqiang, LUO Yong, ZHANG Yunkang, LIU Yunhui, Microstructure and dislocation strengthening of Scmicroalloyed 2099 Al-Li alloy, Rare Metal Materials and Engineering, (41),621(2012)
14 (许晓静, 宋涛, 范真, 张振强, 罗勇, 张允康, 刘云辉, 含Sc含Sc 2099型铝锂合金的组织和位错强化, 稀有金属材料与工程, (41), 621(2012))
15 Ferragut R, Somoza A, Tolley A, Microstructural evolution of 7012 alloy during the early stages of artificial ageing, Acta Materialia, 47(17), 4355(1999)
16 Graf R, Acad C R, The ageing characteristics ofternary A1-Zn-Mg alloys, J. Inst. Metals, 1958(86), 535(1957)
17 Starink M J, Cerezo A, Yan J L, Gao N, Reply to the comments on “Room-temperature precipitation in quenched Al-Cu-Mg alloys: a model for the reaction kinetics and yield-strength development”, Philosophical Magazine Letters, 86(04), 243(2006)
[1] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[2] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
[3] LIU Zhiduo, ZHANG Haoyu, CHENG Jun, ZHOU Ge, ZHANG Xingjun, CHEN Lijia. Effect of Heat Treatment on Tensile Property of Ti-6Mo-5V-3Al-2Fe-2Zr Alloy[J]. 材料研究学报, 2022, 36(12): 919-925.
[4] WANG Shengyuan, ZHANG Haoyu, ZHOU Ge, CHEN Xiaobo, CHEN Lijia. Effect of Solution Treatment Temperature on Microstructure and Tensile Properties of Ti-4Al-6Mo-2V-5Cr-2Zr Alloy[J]. 材料研究学报, 2022, 36(12): 893-899.
[5] ZHAO Mengya, PENG Tao, ZHAO Jiqing, YANG Gang, YANG Bin. Effect of Long-term Aging on Microstructure and Mechanical Properties of 20Cr1Mo1VTiB Bolt Steel[J]. 材料研究学报, 2020, 34(5): 321-327.
[6] Wenjing MA,Zhiguo CHEN,Hongjuan LI,Zhengui YUAN,Ziqiao ZHENG. Process and Mechanism of Novel Heat Treatment for Controlling Residual Stress in Al-Cu-Mg Alloy[J]. 材料研究学报, 2019, 33(6): 435-442.
[7] Xuan WANG, Tao JIN, Haowei WANG, Shengzhi LIAO, Huaiyu YANG. Preparation and Properties of Poly (urea-formaldehyde) Microcapsules Containing Polysulfide Sealant[J]. 材料研究学报, 2018, 32(10): 730-736.
[8] Qinglai ZHANG, Yuanyuan HE, Bingxin ZHANG. Characteristic of Warm Laser Shock Peening of ЭП866 Heat Resistant Martensite Stainless Steel[J]. 材料研究学报, 2017, 31(11): 827-832.
[9] LOU Juhong, YANG Yanqing. Effect of Matrix Properties on Thermal Residual Stress of Fiber Reinforced Ti-matrix Composities[J]. 材料研究学报, 2016, 30(7): 503-508.
[10] ZHANG Zhichao, WANG Yumin, LI Yufang, BAI Chunguang. Numerical Simulation on Residual Stress of SiC Fiber Reinforced Titanium Matrix Composite[J]. 材料研究学报, 2016, 30(5): 355-364.
[11] Zhaobing XIANG,Junhui NIE,Shaohua WEI,Tao ZUO,Zili MA,Jianzhong FAN. Effects of Particle-matrix Matching on Strengthening Mechanism of Particle Reinforced Al Matrix Composites[J]. 材料研究学报, 2015, 29(10): 744-750.
[12] Xiaogang WANG,Yueyi LI,Hailan WANG,Cunlong ZHOU,Qinxue HUANG. Numerical Modeling for Roller Leveling Process of Bimetal-Plate[J]. 材料研究学报, 2014, 28(4): 308-313.
[13] Qinglai ZHANG,Yanxin HONG,Rong WANG,Xingcheng LI,Junjian DUAN,ZHANG Yongkang. Effect of Laser Shock Forming on Microstructure and Residual Stress of AZ31 Magnesium Alloy Sheet[J]. 材料研究学报, 2014, 28(3): 166-172.
[14] ZHANG Xiaoliang, WANG Zhaoxi, QU Baoping, SHI Huiji. Micro Structures and Properties of the Surface with Electrical Discharge Machining for P20 Steel[J]. 材料研究学报, 2013, 27(5): 449-453.
[15] CHEN Bo GAO Ming MA Yingche ZHAO Xiujuan LIU Kui. Effect of Cold Rolling on the Structure and Properties of 301(15Cr17Ni7) Containing Mo Stainless Steel[J]. 材料研究学报, 2010, 24(3): 278-282.
No Suggested Reading articles found!