Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (10): 744-750    DOI: 10.11901/1005.3093.2014.591
Current Issue | Archive | Adv Search |
Effects of Particle-matrix Matching on Strengthening Mechanism of Particle Reinforced Al Matrix Composites
Zhaobing XIANG,Junhui NIE,Shaohua WEI,Tao ZUO,Zili MA,Jianzhong FAN()
General Research Institute for Nonferrous Metals, Beijing 100088, China
Cite this article: 

Zhaobing XIANG,Junhui NIE,Shaohua WEI,Tao ZUO,Zili MA,Jianzhong FAN. Effects of Particle-matrix Matching on Strengthening Mechanism of Particle Reinforced Al Matrix Composites. Chinese Journal of Materials Research, 2015, 29(10): 744-750.

Download:  HTML  PDF(3488KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Al-based composites of 25% SiCp/6061Al and 25% Al2O3/6061Al were fabricated by powder metallurgy method, and then suffered from different solution-aging treatments to ensure the composites with desired strength. The effect of particle-matrix compatibility on the tensile property of the composites was investigated by tensile test and SEM observation. Results show that the low strength Al2O3 particles were not suitable to strengthening the high strength 6061Al matrix. The effect of particle-matrix compatibility on strengthening mechanism was discussed, and it is believed that the particle-matrix compatibility affects the composite property through the stress transfer mechanism. The relationships between particle-matrix compatibility with the particle fracture and composites yielding were revealed, It is obtained that particle cracking decreased as particle strength increase, and finally an expression to represent the particle-matrix compatibility was summed up.

Key words:  composites      particle reinforced aluminum matrix composite      particle-matrix matching      strengthening mechanism      tensile property     
Received:  16 October 2014     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.591     OR     https://www.cjmr.org/EN/Y2015/V29/I10/744

Mg Si Cu Mn Cr Ti Zn Fe Al
6061Al 0.8-1.2 0.4-0.8 0.15-0.4 0.15 0.04-0.35 0.15 0.25 0.7 Bal.
Table 1  Chemical components of 6061Al (%, mass fraction)
Fig.1  Metallograph of composites 25%Al2O3/6061Al (a) and 25%SiCp/6061Al (b)
Fig.2  Stress-strain curves (a) and stress ratio-strain curve (b) of composites without heat treatment
Fig.3  Stress-strain curves of composites with different heat treatment (a) 25%Al2O3/6061Al, (b) 25%SiCp/6061Al
Fig.4  Tensile fracture morphologies of composites, (a) Al2O3/6061Al composite without solution, (b) SiCp/6061Al composite without solution, (c) Al2O3/6061Al composite with 535℃solution, (d) SiCp/6061Al composite with 535℃solution
Fig.5  Stress-strain curves and stress ratio-strain curves of composites with 535℃ solution treatment, (a, c) stress-strain curves, (b, d) stress ratio-strain curves
1 WANG Ying,LIU Xiangdong, Present status and development trend of SiCp/Al composite, Research Studies on Foundry Equipment, 3, 18(2003)
1 (王 莹, 刘向东, 碳化硅颗粒增强铝基复合材料的现状及发展趋势, 铸造设备研究, 3, 18(2003))
2 JIN Peng,LIU Yue, LI Shu, XIAO Bolv, Effects of particle size on tensile property and fracture behavior on particle reinforced metal matrix composites, Chinese Journal of Material Research, 23(2), 211(2009)
2 (金 鹏, 刘 越, 李 曙, 肖伯律, 碳化硅增强铝基复合材料的力学性能和断裂机制, 材料研究学报, 23(2), 211(2009))
3 FAN Jianzhong,SHI Likai, Development and application of particle reinforced aluminum matrix composites, Aerospace Materials and Technology, 1, 1(2012)
3 (樊建中, 石力开, 颗粒增强铝基复合材料研究与应用发展, 宇航材料工艺, 1, 1(2012))
4 CONG Hongtao,ZHONG Rong, CHENG Huiming, LU Ke, Reinforcing effects of SWNTs associated with nano-Al base, Chinese Journal of Material Research, 17(2), 132(2003)
4 (丛洪涛, 钟 蓉, 成会明, 卢 柯, 单壁纳米碳管/纳米铝基复合材料的增强效果, 材料研究学报, 17(2), 132(2003))
5 LI Xia,CHEN Kanghua, HUANG Dawei, Influence of reinforced particle on strength of particle-reinforced Aluminum matrix composites, Aluminium Fabracation, 2, 9(2006)
5 (李 侠, 陈康华, 黄大为, 增强颗粒对颗粒增强铝基复合材料强度的影响, 铝加工, 2, 9(2006))
6 L. Loyd,Particle reinforced aluminum and magnesium matrix composites, International Materials Review, 39(1), 1(1994)
7 S. G. Song, N. Shi, G. T. Gray,Reinforcement shape effects on the fracture behavior and ductility of particulate-reinforced 6061-Al matrix composites, Metallurgical and Materials Transaction A, 27, 3739(1996)
8 XU Na,ZONG Yaping, ZHANG Fang, ZUO Liang, Simulation of stress in reinforcements and stress-strain curve of SiCp/Al-2618 matrix composite , Acta Metall Sinica, 43(8), 863(2007)
8 (徐 娜, 宗亚平, 张 芳, 左 良, SiCp/Al-2618复合材料的应力-应变曲线和增强颗粒受力的模拟, 金属学报, 43(8), 863(2007))
9 X. L. Gao,Analytical solution for the stress field around a hard spherical particle in a metal matrix composite incorporating size and finite volume effects, Mathematics and Mechanics of Solids, 13, 357(2008)
10 Eun U. Lee,Thermal stress and strain in a metal matrix composite with a spherical reinforcement particle, Metallurgical Transactions A, 23A, 2205(1992)
11 G. I. Taylor,Plastic strain in metal, J. Inst. Metals., 62, 307(1938)
12 F. Zhang, Y. Huang, K. C. Hwang, S. Qu, C. Liu,A three-dimensional strain gradient plasticity analysis of particle size effect in composite materials, Materials and Manufacturing Processes, 22, 140(2007)
13 H. Mojia, Z. Wennan, Q. S. Zheng,Explicit expression of Eshelby tensor for arbitrary weakly non-circular inclusion in two-dimensional elasticity, International Journal of Engineering Science, 47, 1240(2009)
14 A. Abedini, Z. T. Chen,A micromechanical model of particle-reinforced metal matrix composites considering particle size and damage, Computational Materials Science, 85, 200(2014)
[1] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[2] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[3] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[4] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[5] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
[6] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[7] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[8] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[9] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[10] LIU Zhiduo, ZHANG Haoyu, CHENG Jun, ZHOU Ge, ZHANG Xingjun, CHEN Lijia. Effect of Heat Treatment on Tensile Property of Ti-6Mo-5V-3Al-2Fe-2Zr Alloy[J]. 材料研究学报, 2022, 36(12): 919-925.
[11] WANG Shengyuan, ZHANG Haoyu, ZHOU Ge, CHEN Xiaobo, CHEN Lijia. Effect of Solution Treatment Temperature on Microstructure and Tensile Properties of Ti-4Al-6Mo-2V-5Cr-2Zr Alloy[J]. 材料研究学报, 2022, 36(12): 893-899.
[12] ZHENG Yaya, LUO Binghui, BAI Zhenhai. Evolution of Microstructure and Precipitates of Al-Mg-Si Alloy during Early Aging Process[J]. 材料研究学报, 2022, 36(12): 926-932.
[13] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[14] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[15] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
No Suggested Reading articles found!