Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (6): 435-442    DOI: 10.11901/1005.3093.2018.626
ARTICLES Current Issue | Archive | Adv Search |
Process and Mechanism of Novel Heat Treatment for Controlling Residual Stress in Al-Cu-Mg Alloy
Wenjing MA1,Zhiguo CHEN1,2(),Hongjuan LI2,Zhengui YUAN1,Ziqiao ZHENG2()
1. School of Materials Science and Engineering, Central South University, Changsha 410083, China
2. Department of Materials Engineering, Hunan University of Humanities, Science and Technology, Loudi 417000, China
Cite this article: 

Wenjing MA,Zhiguo CHEN,Hongjuan LI,Zhengui YUAN,Ziqiao ZHENG. Process and Mechanism of Novel Heat Treatment for Controlling Residual Stress in Al-Cu-Mg Alloy. Chinese Journal of Materials Research, 2019, 33(6): 435-442.

Download:  HTML  PDF(8658KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influence of a novel heat treatment process for reducing residual stress on the microstructure evolution and mechanical properties of Al-Cu-Mg alloy was investigated by means of transmission electron microscope, scanning electron microscope, X-ray diffractometer and tensile test. The results show that the residual stress reduction rate of Al-Cu-Mg alloy (compared with the solid solution treated one) reaches 92.7% by the novel heat treatment, while an excellent combination of strength and plasticity was acquired. As a result, the yield strength, ultimate tensile strength and the elongation rate of the alloy can reach 463.6 MPa, 502.5 MPa and 12.7% respectively. TEM observations reveal that the S′ precipitates are fine and uniformly distributed in the microstructure after the novel heat treatment. The synergistic effect of the coherency stress field produced by these S' phases and the quenching residual stress field may result in a significant reduction of the residual stress, which gives rise to the high comprehensive properties of Al-Cu-Mg alloy.

Key words:  metallic materials      Al-Cu-Mg      novel heat treatment      residual stresses      mechanical properties      microstructure     
Received:  23 October 2018     
ZTFLH:  TG146.2  
Fund: National Natural Science Foundation of China(No. 51011120052)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.626     OR     https://www.cjmr.org/EN/Y2019/V33/I6/435

CuMgMnFeSiAl
4.21.50.60.090.06Bal.
Table 1  Chemical composition of alloy (%, mass fraction)
Sample nameSolution heat treatmentQuenching mediaPre-deformationImmersion liquid nitrogenReheating mediumAging
ST495℃/1 hwater 20℃----
T6495℃/1 hwater 20℃---190℃/12 h
T8(1.5%)495℃/1 hwater 20℃1.5%--190℃/10 h
T8(3%)495℃/1 hwater 20℃3%--190℃/10 h
PU(1.5/200)495℃/1 hwater 20℃1.5%-196℃/2 h200℃/5 min190℃/10 h
PU(3/150)495℃/1 hwater 20℃3%-196℃/2 h150℃/5 min190℃/10 h
PU(3/200)495℃/1 hwater 20℃3%-196℃/2 h200℃/5 min190℃/10 h
Table 2  Process parameters of the heat treatment
Fig.1  Schematic presentation of the novel heat treatment
Fig.2  Residual stresses of alloy under different conditions
Fig.3  Relative reduction in residual stresses compared to solution treated sample
sample nameσ0.2/MPaσb/MPaδ/%
ST15830519.2%
T6246.6367.316.5%
T8(1.5%)414.545210.2%
T8(3%)439.6472.59%
PU(1.5/200)370.8409.413%
PU(3/150)463.6502.512.7%
PU(3/200)354.8391.213.4%
Table 3  Tensile mechanical properties of alloy under different conditions
Fig.4  XRD patterns of alloy under different conditions (A) T8(3%); (B) PU(3/150);(C)PU(3/200)
Sample name(111)(200)(220)(311)
T8(3%)56.910029.629.8
PU(3/150)4.610017.46.9
PU(3/200)7.610025.516.9
Table 4  Relative diffraction peak intensity of alloy under different conditions
Fig.5  Fracture morphoiogies of alloy for tensile test (a) PU(1.5/200); (b) PU(3/150); (c) T6 peak aging; (d) T8(3%) and EDS spectra of second phase (e) of PU(3/150) alloy
Fig.6  TEM images of alloy with corresponding diffraction patterns under different heat treatment conditions (a) T6 peak aging; (b) T8(3%); (c) PU(3/150); (d) PU(3/200)
[1] Srivatsan T S, Kolar D, Magnusen P. The cyclic fatigue and final fracture behavior of aluminum alloy 2524 [J]. Materials & Design, 2002, 23(2): 129
[2] Ren J K, Chen Z G, Huang Y J, et al. Effect of new thermo-mechanical treatment on microstructure and properties of 2E12 aluminum alloy [J]. The Chinese Journal of Nonferrous Metals, 2014, 24(03): 643
[2] (任杰克, 陈志国, 黄裕金等. 新型热机械处理对2E12铝合金显微组织与性能的影响 [J].中国有色金属学报, 2014, 24(03): 643)
[3] Chen Y Q, Pan S P, Zhou M Z, et al. Effects of inclusions, grain boundaries and grain orientations on the fatigue crack initiation and propagation behavior of 2524-T3 Al alloy [J]. Materials Science and Engineering: A, 2013, 580: 150
[4] Garcia C, Lotz T, Martinez M, et al. Fatigue crack growth in residual stress field [J]. International Journal of Fatigue, 2016, 87: 326
[5] Ko D H, Ko D C, Lim H J, et al. Prediction and measurement of relieved residual stress by the cryogenic heat treatment for Al6061 alloy: mechanical properties and microstructure [J]. Journal of Mechanical Science and Technology, 2013, 27(7): 1949
[6] Pouget G, Reynolds A P. Residual stress and microstructure effects on fatigue crack growth in AA2050 friction stir welds [J]. International Journal of Fatigue, 2008, 30(3): 463
[7] Yuan W J, Wu Y X. Mechanics about eliminating residual stress of aluminum alloy thic-ken-plates based on pre-stretching technology [J]. Journal of Central South University (Science and Technology), 2011, 42(8): 2303
[7] (袁望姣, 吴运新. 基于预拉伸工艺的铝合金厚板残余应力消除机理 [J]. 中南大学学报(自然科学版), 2011, 42(08): 2303)
[8] Chen Z G, Ren J K, Zhang J S, et al. Regulation Mechanism of Novel Thermomechanical Treatment for Microstructure and Properties of 2E12 Aluminum Alloy [J]. Rare Metal Materials and Engineering, 2015, 44(10): 2341
[9] Prime M B, Hill M R. Residual stress, stress relief, and inhomogeneity in aluminum plate [J]. Scripta Materialia, 2002, 46(1): 77
[10] Robinson J S, Tanner D A. Residual stress development and relief in high strength aluminium alloys using standard and retrogression thermal treatments [J]. Materials Science and Technology, 2003, 19(4): 512
[11] Simencio E C A, Canale L C F, Totten G E. Uphill quenching of aluminium: a process overview [J]. International Heat Treatment and Surface Engineering, 2011, 5(1): 26
[12] Robinson J S, Tanner D A, Truman C E. 50th Anniversary Article: The Origin and Management of Residual Stress in Heat-treatable Aluminium Alloys [J]. Strain, 2014, 50(3): 185
[13] Lin F, Wang H M, Qin G H, et al. Investigation on residual stresses in pre-stretching process of aluminum alloy thick plate based on material non-uniformity [J]. Key Engineering Materials, 2016, 693
[14] Lim H J, Ko D H, Ko D C,et alReduction of residual stress and improvement of dimensional accuracy by uphill quenching for Al6061 tube[J]. Metallurgical and Materials Transactions B,2014, 45(2): 472
[15] Lados D A, Apelian D, Wang L. Minimization of residual stress in heat-treated Al-Si-Mg cast alloys using uphill quenching: Mechanisms and effects on static and dynamic properties [J]. Materials Science and Engineering: A, 2010, 527(13-14): 3159
[16] Chen D, Li W X. Cryogenic treatment of Al and Al alloys [J]. The Chinese Journal of Nonferrous Metals. 2000, (06): 891
[16] (陈 鼎, 黎文献. 铝和铝合金的深冷处理 [J]. 中国有色金属学报, 2000, (06): 891)
[17] Feng Z Q, Yang Y Q, Huang B, et al. Precipitation process along dislocations in Al-Cu-Mg alloy during artificial aging [J]. Materials Science and Engineering: A, 2010, 528(2): 706
[18] Ringer S P, Hono K, Polmear I J, et al. Precipitation proeesses during the early stage of aging in Al-Cu-Mg alloys. Applied Surfaee Scienee, 1996, 94-95: 253
[19] Wang S C, Starink M J. Two types of S phase precipitates in Al-Cu-Mg alloys [J]. Acta Materialia, 2007, 55(3): 933
[20] Dong Y B, Shao W Z, Jiang J T, et al. Minimization of residual stress in an Al-Cu alloy forged plate by different heat treatments [J]. Journal of Materials Engineering and Performance, 2015, 24(6): 2256
[21] Quan L W, Gang Z, Sam G A O, et al. Effect of pre-stretching on microstructure of aged 2524 aluminium alloy [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(9): 1957
[22] Kim W J, Chung C S, Ma D S, et al. Optimization of strength and ductility of 2024 Al by equal channel angular pressing (ECAP) and post-ECAP aging [J]. Scripta Materialia, 2003, 49(4): 333
[23] Wang Y, Peng T, Zhang M C. Micro-mechanisms of quenching residual stress reducti- onfor 2A02 aluminum alloy under aging treatment [J]. Transactions of Materialsand Heat Treatment. 2015, 36(06): 65
[23] (王 岩, 彭 桃, 张麦仓. 时效热处理消减2A02铝合金淬火残余应力的微观机理 [J]. 材料热处理学报, 2015, 36(06): 65)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!