Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (5): 321-327    DOI: 10.11901/1005.3093.2019.361
ARTICLES Current Issue | Archive | Adv Search |
Effect of Long-term Aging on Microstructure and Mechanical Properties of 20Cr1Mo1VTiB Bolt Steel
ZHAO Mengya1, PENG Tao1, ZHAO Jiqing2, YANG Gang2, YANG Bin1()
1.Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
2.Institute for Special Steels, Central Iron & Steel Research Institute, Beijing 100081, China
Cite this article: 

ZHAO Mengya, PENG Tao, ZHAO Jiqing, YANG Gang, YANG Bin. Effect of Long-term Aging on Microstructure and Mechanical Properties of 20Cr1Mo1VTiB Bolt Steel. Chinese Journal of Materials Research, 2020, 34(5): 321-327.

Download:  HTML  PDF(11615KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The 20Cr1Mo1VTiB bolt steel was aged at 500℃ for 0~2000 h and then the effect of long-term aging on microstructure and mechanical properties were investigated by means of TEM, SEM, XRD, tensile- and impact-tester. Results show that the lath bainite in the steel was divided into several packets during the aging process. The size of the bainite package in the steel decreased from 13 μm before aging to 9 μm after aged for 2000 h. The main precipitates VC and TiC in the steel dispersed in the intragranular, lath boundaries and inside lath bainite after the aging process. TiC changed from a long strip to a square shape with an extension of the aging time. The boundary of bainite slabs gradually blurred with the increase of aging time, and the width of lath increased obviously after 2000 h aging. After aging for 2000 h the 20Cr1Mo1VTiB bolt steel still has high strength and toughness, therefore, which is suitable for long term service at high temperature.

Key words:  metallic materials      diffusion strengthening      long-term aging      tensile property     
Received:  19 July 2019     
ZTFLH:  TG142.1  
Fund: High Technology Research and Development Program of China(2016YFB0300203)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.361     OR     https://www.cjmr.org/EN/Y2020/V34/I5/321

CCrMoVTiBSiMnSPNiCu
0.221.171.020.910.0560.0040.0420.280.00150.00490.00920.0053
Table 1  Chemical composition of the 20Cr1Mo1VTiB bolt steel (mass fraction, %)
Fig.1  The microstructures of 20Cr1Mo1VTiB bolt steel after quenching at 1030℃ for 1 h, and then oil cooling (a) 1030℃×1 h quenching and then oil cooling+720℃×2 h tempering and air cooling; (b) 1030℃×1 h quenching and then oil cooling
Fig.2  Effect of aging time on the microstructures of 20Cr1Mo1VTiB bolt steel (a) 500 h; (b) 1000 h; (c) 2000 h
Fig.3  Lath bainite morphologies in the 20Cr1Mo1V-TiB bolt steel aged for different times (a) 0 h; (b) 1000 h; (c) 2000 h
Fig.4  Analysis of precipitates in the 20Cr1Mo1VTiB bolt steel aged for different times. (a) XRD pattern of precipitates; (b) Elements in the precipitates as a function of aging time; (c) An enlarged view of the parts in Figure 4 (b)
Fig.5  Morphologies and energy spectra of precipitates in the 20Cr1Mo1VTiB bolt steel after aging for 2000 h (a) Ellipsoidal VC and its diffraction pattern; (b) Energy spectrum analysis of VC; (c) Square TiC and its diffraction pattern; (d) TiC energy spectrum analysis; (e) TiC morphology
Fig.6  Phase diagram of the 20Cr1Mo1VTiB bolt steel
Fig.7  TEM analysis of precipitates in the 20Cr1Mo1VTiB bolt steel treated for different aging times (a)、(b) 0 h; (c)、(d) 1000 h; (e)、(f) 2000 h
Fig.8  Effect of aging time on mechanical properties in the 20Cr1Mo1VTiB bolt steel (a) Tensile strength at 500℃; (b) impact toughness at -20℃
Mechanical PropertyRm/MPa (500℃)Rp0.2/MPa (500℃)

- 2 0 ℃ )

Akv2/J (

Experimental value605.5537.3168
Required value≥543≥507≥70
Table 2  Execution standards for mechanical properties of the 20Cr1Mo1VTiB bolt steel
[1] Wang X, Li Y, Li H, et al. Effect of long-term aging on the microstructure and mechanical properties of T23 steel weld metal without post-weld heat treatment [J]. J. Mater. Process. Tech. 2018, 252: 618
[2] Gong X T, Wu Z G, Li X, et al. Effect of heat treatment process on microstructure and properties of 20Cr1Mo1VTiB bolt steel [J]. Iron Steel., 2018, 53(12): 105
(龚雪婷, 武志广, 李鑫等. 热处理工艺对20Cr1Mo1VTiB螺栓钢组织及性能的影响 [J]. 钢铁. 2018, 53(12): 105)
[3] Zieliński A, Golański G, Sroka M. Influence of long-term ageing on the microstructure and mechanical properties of T24 steel [J]. Mater. Sci. Eng. A., 2017, 682: 664
[4] Zieliński A, Golański G, Sroka M, et al. Influence of long-term service on microstructure, mechanical properties, and service life of HCM12A steel [J]. Mater. High Temp. 2016, 33(1): 24
[5] Guo X F, Jia X K, Gong J M, et al. Effect of long-term aging on microstructural stabilization and mechanical properties of 20Cr32-Ni1Nb steel [J]. Mater. Sci. Eng. A.,2017, 690: 62
[6] Chen C Y, Yen H W, Kao F H, et al. Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides [J]. Mater. Sci. Eng. A, 2009, 499(1-2): 162
[7] Huang S, He Y W, Xu G H, et al. Effects of vanadium on microstructure and mechanical properties of a wrought nickel-based superalloy [J]. Chinese Journal Material Research, 2019, 33(6): 419
(黄烁, 贺玉伟, 胥国华等. V元素对铁镍基变形高温合金GH4061组织和性能的影响 [J]. 材料研究学报, 2019, 33(6): 419)
[8] Ni Z F, Xue F. High temperature creep characteristics of in-situ micro-/nano-meter TiC dispersion strengthened 304 stainless steel [J]. Chinese Journal of Materials Research, 2019, 33(4): 306
(倪自飞, 薛烽. 原位微米/纳米TiC颗粒弥散强化304不锈钢的高温蠕变特性 [J]. 材料研究学报, 2019, 33(4): 306)
[9] Feng J W, Niu M C, Wang W, et al. Relationship between mechanical behavior and microstructure for an ultra-high strength maraging steel [J]. Chinese Journal of Materials Research, 2019, 33(9): 641
(冯家伟, 牛梦超, 王威等. 超高强度马氏体时效钢的力学行为与微观组织演化的关系 [J]. 材料研究学报, 2019, 33(9): 641)
[10] Zhang C, Wang Q, Ren J, et al. Effect of microstructure on the strength of 25CrMo48V martensitic steel tempered at different temperature and time [J]. Materials & Design (1980-2015. 2012, 36: 220
[11] Zhu M, Wang D, Xuan F. Effect of long-term aging on microstructure and local behavior in the heat-affected zone of a Ni-Cr-Mo-V steel welded joint [J]. Mater. Charact. 2014, 87: 45
[12] Wei F G, Tsuzaki K. Quantitative analysis on hydrogen trapping of TiC particles in steel [J]. Metall. Mater. Trans. A., 2006, 37(2): 331
[13] Jang J H, Lee C, Heo Y, et al. Stability of (Ti, M)C (M=Nb, V, Mo and W) carbide in steels using first-principles calculations [J]. Acta Mater. 2012, 60(1): 208
[14] Han Y, Shi J, Xu L, et al. TiC precipitation induced effect on microstructure and mechanical properties in low carbon medium manganese steel [J]. Mater. Sci. Eng. A., 2011, 530: 643
[15] Jang J H, Lee C, Han H N, et al. Modelling coarsening behaviour of TiC precipitates in high strength, low alloy steels [J]. Mater. Sci. Tech.-Lond. 2013, 29(9): 1074
doi: 10.1179/1743284713Y.0000000254
[16] Tsai S, Jen C, Yen H, et al. Effects of interphase TiC precipitates on tensile properties and dislocation structures in a dual phase steel [J]. Mater. Charact. 2017, 123: 153
[17] Wang X P, Zhao A m, Zhao Z Z, et al. Interphase precipitation strengthening in Ti-Mo low carbon ultra-high strength steel [J]. J. Eng. Sci., 2014, (9): 1183
(汪小培, 赵爱民, 赵征志等. Ti-Mo低碳超高强钢中相间析出强化 [J]. 工程科学学报, 2014, (9): 1183)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!