Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (5): 355-364    DOI: 10.11901/1005.3093.2015.312
研究论文 Current Issue | Archive | Adv Search |
Numerical Simulation on Residual Stress of SiC Fiber Reinforced Titanium Matrix Composite
ZHANG Zhichao1, WANG Yumin2,*(), LI Yufang1, BAI Chunguang2
1.College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

ZHANG Zhichao, WANG Yumin, LI Yufang, BAI Chunguang. Numerical Simulation on Residual Stress of SiC Fiber Reinforced Titanium Matrix Composite. Chinese Journal of Materials Research, 2016, 30(5): 355-364.

Download:  HTML  PDF(1863KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

FEM calculation for the preparation process of SiC fiber and SiC/Ti-6Al-4V composite was carried out to investigate the effect of different processing parameters on the residual stress of the SiC fiber as well as the densification behavior and residual stress of the composite. The results show that, for the fabrication process of fibers, the axial thermal stress of the WC layer decreases with the decrease of deposition temperature and thickness of C layer. For the densification of composites, HIP temperature and sheath thickness have greater impact on the density, but HIP time and fiber volume fraction have smaller impact; with the increasing HIP temperature and decreasing sheath thickness, the density of the composite could be enhanced; the radial residual stress on the matrix greatly increases with the increase of HIP temperature and fiber volume fraction and decrease of sheath thickness appropriately; the hoop residual stress on the matrix greatly decreases with the increase of HIP temperature and sheath thickness, while decrease of HIP time appropriately. Finally the following processing parameters were recommended for preparation of SiC/Ti-6Al-4V composite with good quality: HIP temperature 950-960℃, HIP time 9 h and sheath thickness 70-80 mm and fiber volume fraction 45%-50%. FEM calculation results show some differences with those measured in the experiment for the residual stress of the composite, but with similar variation tendency.

Key words:  titanium matrix composite      SiC fiber      densification      residual stress      finite element simulation     
Received:  28 May 2015     
ZTFLH:  TB331  
About author:  *To whom correspondence should be addressed, Tel: (024)23971962, E-mail: yuminwang@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.312     OR     https://www.cjmr.org/EN/Y2016/V30/I5/355

Fig.1  Axisymmetric finite element model of SiC fiber
Material properties W WC SiC C
Young's modulus E/GPa 411 379 400 110
CTE α/(10-6-1) 4.6 25℃ 3.84 4.0 0.5
900℃ 7
Poisson ratio ν 0.28 0.23 0.17 0.23
Table 1  Material property parameters
Fig.2  Temperature load
Fig.3  Finite element model for hot isostatic pressing
Fig.4  HIP parameters of composite
Fig.5  Deformation of HIP model
Temperature/℃ 25 200 400 700 900
CTE α/(10-6-1) 3.53 3.62 3.87 4.36 4.59
Young's modulus E/GPa 400(all temp.)
Poisson ratio ν 0.5(all temp.)
Density ρ(kgm-3) 2550(all temp.)
Thermal conductivity
(kgmm/(sK))
0.49(all temp.)
Specific heat(mm2/(s2K)) 680000(all temp.)
Table 2  Material properties of SiC fiber
Temperature/℃ 23 200 400 600 800
CTE α/(10-6-1) 8.9 - - - 9.8
Young's modulus E/GPa 105.0 94.7 84.1 74.2 62.8
Yield stress σy/MPa 890.9 690.9 563.6 19.09 10.91
Shear modulus H/GPa 0.53 0.67 0.69 0.21 0.13
Thermal conductivity
(10-3kgmm/(sK))
6.6 9.1 12.6 17.5 -
Specific heat
(103mm2/(s2K))
565 574 649 770 959
Poisson ratio ν 0.34(all temp.)
Density ρ(kgm-3) 4440(all temp.)
Table 3  Material properties of Ti-6Al-4V matrix and capsule
Factor Deposition
temperature
WC layer
thickness
SiC layer
thickness
C layer
thickness
Average value1/MPa 798.929 986.001 993.842 967.442
Average value2/MPa 981.185 989.853 985.629 985.437
Average value3/MPa 1177.644 981.905 978.287 1004.879
Range 378.715 7.948 15.555 37.437
Table 4  Average axial thermal stress of WC layer for orthogonal experiment
Fig.6  Effect of SiC fiber parameters on WC layer axial thermal stress (a) deposition temperature; (b) WC layer thickness; (c) SiC layer thickness; (d) C layer thickness
Factor HIP temperature HIP time Can thickness Fiber volume fraction
Average value1 0.872 0.883 0.921 0.885
Average value2 0.878 0.893 0.888 0.883
Average value3 0.886 0.896 0.880 0.888
Average value4 0.897 0.889 0.878 0.894
Average value5 0.913 0.885 0.878 0.898
Range 0.041 0.013 0.043 0.015
Table 5  Density orthogonal experiment table
Fig.7  Effect of HIP parameters on densification (a) temperature; (b) time; (c) thickness; (d) fiber volume fraction
Fig.8  Residual stress distribution curve of on path E (a) radial; (b) hoop
Factor HIP temperature HIP time Can thickness Fiber volume fraction
Average value1/MPa 98.165 102.415 160.275 75.131
Average value2/MPa 115.972 118.780 127.898 97.289
Average value3/MPa 122.139 133.557 116.792 125.420
Average value4/MPa 128.149 130.117 113.262 146.759
Average value5/MPa 155.747 135.303 101.945 175.574
Range 57.582 32.888 58.330 100.443
Table 6  F-point radial residual stress orthogonal experiment table
Fig.9  Effect of HIP parameters on radial residual stress: (a) temperature; (b) time; (c) thickness; (d) fiber volume fraction
Factor HIP temperature HIP time Can thickness Fiber volume fraction
Average value1/MPa 262.096 193.320 247.252 232.807
Average value2/MPa 244.531 225.072 244.391 233.402
Average value3/MPa 226.111 229.351 237.901 230.886
Average value4/MPa 224.497 244.647 233.652 224.659
Average value5/MPa 191.201 256.047 218.472 226.683
Range 70.895 62.727 28.780 8.743
Table 7  F-point hoop residual stress orthogonal experiment table
Fig.10  Effect of HIP parameters on hoop residual stress (a) temperature; (b) time; (c) thickness; (d) fiber volume fraction
Fig.11  Axial stress distribution curve along radial direction on the middle surface of symmetric model with different aspect ratio
Fig.12  SiC residual stress distribution curve along radial direction measureed by Laser Raman
Fig.13  Residual stress distribution of SiC fiber (a) nmiddle, (b) end
1 Hooker J A, Doorbar P J, Metal matrix composites for aeroengines, Materials Science and Technology, 16, 725(2000)
2 YANG Rui, SHI Nanlin, WANG Yumin, LEI Jaifeng, ZHANG Guoxing, FU Yuechun, LI Yanhua, ZHANG Dezhi, Recent progress in SiC fibre reinforced titanium matrix composites, Titanium Industry Progress, 22, 32(2005)
(杨锐, 石南林, 王玉敏, 雷家峰, 张国兴, 符跃春, 李艳华, 张德志, SiC纤维增强钛基复合材料研究进展, 钛工业进展, 22, 32(2005))
3 Nimmer R P, Fiber-matrix interface effects in the presence of thermally induced residual stress, Journal of Composites Technology Research, 12(2), 65(1990)
4 Wisnom M R, Factors affecting the transverse tensile strength of unidirectional continuous silicon carbide fiber reinforced 6061 aluminum, Comput Mater, 24(7), 707(1990)
5 Aghdam M M, Kamalikhah A, Micromechanical analysis of layered systems of MMCs subjected to bending effects of thermal residual stresses, Composite Structures, 66(1), 563(2004)
6 Akser E O, Choy K L, Finite element analysis of the stress distribution in a thermally and transversely loaded Ti-6Al-4V/SiC fibre composite, Composites Part A: Applied Science and Manufacturing, 32(2), 243(2001)
7 MA Zhijun, YANG Yanqing, ZHU Yan, CHEN Yan, Effect of matrix material properties on thermal residual stresses of titanium matrix composites, Acta Metallurgica Sinica, 38, 488(2002)
(马志军, 杨延清, 朱艳, 陈彦, 基体材料性能对钛基复合材料热残余应力的影响, 金属学报, 38, 488(2002))
8 Figiel Ł, Günther B, Modelling the high-temperature longitudinal fatigue behaviour of metal matrix composites (SiC/Ti-6242): Nonlinear time-dependent matrix behaviour, International Journal of Fatigue, 30(2), 268(2008)
doi: 10.1016/j.ijfatigue.2007.01.056
9 Kishimoto H, Shibayama T, Shimoda K, et al.Microstructural and mechanical characterization of W/SiC bonding for structural material in fusion, Journal of Nuclear Materials, 417(1), 387(2011)
10 SHEN Wentao, YANG Yanqing, ZHANG Rongjun, Effect of W/SiC interfacial reaction layer on tensile and fracture behavior of SiC fibre, Rare Metal Materials & Engineering, 40(3), 491(2011)
(沈文涛, 杨延清, 张荣军, W/SiC界面反应层对SiC纤维拉伸断裂行为的影响, 稀有金属材料与工程, 40(3), 491(2011))
11 Akalin O, Ezirmik V K, Urgen M, Wear characteristics of NiTi/Al6061 short fiber metal matrix composite reinforced with SiC particulates, Journal of Tribology, 132(4), (2010)
12 LUO Xian, YANG Yanqing, WANG Chen, Research progress in interfacial modification of SiC fiber reinforced titanium matrix composites, Materials Review, 23(2011)
(罗贤, 杨延清, 王晨, SiC纤维增强钛基复合材料的界面改性研究现状, 材料导报, 23(2011))
13 Hernandez X, Jiménez C, Mergia K, SiC Composite to titanium Alloy, Journal of Materials Engineering & Performance, 23(8), 3069(2014)
14 Lacoste E, Arvieu C, Quenisset J M, Correlation between microstructures of SiC-reinforced titanium matrix composite and liquid route processing parameters, Journal of Materials Science, 50, 5583(2015)
15 Gussone J, Hausmann J, Gussone J, Electrolytic deposition of titanium on SiC-fibres as first step in titanium matrix composite production, International Round Table on Titanium Production in Molten Salts, September, 2010
16 ZHANG Xu, Study on interface reaction, residual stress and mechanical properties of SiCf/TC17 composite, PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences (2012)
(张旭, SiCf/TC17复合材料界面反应、残余应力及力学性能研究, 博士学位论文, 中国科学院金属研究所(2012))
17 WANG Yumin, XIAO Peng, SHI Nanlin, SiC fibre reinforced titanium matrix composite: interface evolution and component manufacturing, Materials China, 29(5), 9(2010)
(王玉敏, 肖鹏, 石南林, SiC纤维增强钛基复合材料界面研究及构件研制, 中国材料进展, 29(5), 9(2010))
18 ZHAO Bin, LIAO Jinhua, HOU Hongliang, The fabrication of hollow structure of SiC fiber reinforced titanium matrix composite, Materials Science & Technology, 19(2), 28(2011)
(赵冰, 廖金华, 侯红亮, SiC纤维增强钛基复合材料空心结构成形研究, 材料科学与工艺, 19(2), 28(2011))
[1] Wenjing MA,Zhiguo CHEN,Hongjuan LI,Zhengui YUAN,Ziqiao ZHENG. Process and Mechanism of Novel Heat Treatment for Controlling Residual Stress in Al-Cu-Mg Alloy[J]. 材料研究学报, 2019, 33(6): 435-442.
[2] Qingsheng LIU,Zhenming XU,Weidong TANG. Numerical Analysis and Experimental Research of Sodium Diffusion Process Based on Microstructure of Electrolytic Cathode Carbon Block[J]. 材料研究学报, 2017, 31(3): 233-240.
[3] Qinglai ZHANG, Yuanyuan HE, Bingxin ZHANG. Characteristic of Warm Laser Shock Peening of ЭП866 Heat Resistant Martensite Stainless Steel[J]. 材料研究学报, 2017, 31(11): 827-832.
[4] LOU Juhong, YANG Yanqing. Effect of Matrix Properties on Thermal Residual Stress of Fiber Reinforced Ti-matrix Composities[J]. 材料研究学报, 2016, 30(7): 503-508.
[5] Guirong LI,Fangfang WANG,Rui ZHENG,Hongming WANG,Chao HUANG,Fei XUE,Yi ZHU. Microstructural Evolution and Strengthening Mechanism of Al Alloy Matrix Composites by Applied High Pulsed Electromagnetic Field[J]. 材料研究学报, 2016, 30(10): 745-752.
[6] Xiaogang WANG,Yueyi LI,Hailan WANG,Cunlong ZHOU,Qinxue HUANG. Numerical Modeling for Roller Leveling Process of Bimetal-Plate[J]. 材料研究学报, 2014, 28(4): 308-313.
[7] Qinglai ZHANG,Yanxin HONG,Rong WANG,Xingcheng LI,Junjian DUAN,ZHANG Yongkang. Effect of Laser Shock Forming on Microstructure and Residual Stress of AZ31 Magnesium Alloy Sheet[J]. 材料研究学报, 2014, 28(3): 166-172.
[8] ZHANG Xiaoliang, WANG Zhaoxi, QU Baoping, SHI Huiji. Micro Structures and Properties of the Surface with Electrical Discharge Machining for P20 Steel[J]. 材料研究学报, 2013, 27(5): 449-453.
[9] YANG Kaihuai CHEN Wenzhe. Finite Element Simulation and Experimental Research on the Influence of Pressing Mode on 5052 Aluminum Alloy Processed by Groove Pressing[J]. 材料研究学报, 2011, 25(6): 625-629.
[10] XIAO Daihong YUAN Teichui HE Yuehui. Synthesis and Performance of In–situ Ti–B–C–Si Composites[J]. 材料研究学报, 2011, 25(4): 413-416.
[11] LI Ping XUE Kemin ZHOU Mingzhi. Microstructure and properties evolution and mechanism analysis of sintered aluminum powder during equal channel angular expression[J]. 材料研究学报, 2009, 23(6): 577-581.
[12] XU Yue ZHANG Tong LI Liuan LI Hongdong LU Xianyi JIN Zengsun. Analysis of residual stress and micro--stress in free--standing boron--doped polycrystalline diamond films by XRD[J]. 材料研究学报, 2009, 23(3): 264-268.
[13] . Preparation for 2D–C/C composites with pure RL textures and its characteristic[J]. 材料研究学报, 2009, 23(2): 138-142.
[14] Zhao Dafang Li Xiaodong Zheng Chunman. Polyaluminocarbosilane prepared with fillings as precursors for SiC(Al) fibers[J]. 材料研究学报, 2008, 22(6): 623-628.
[15] LI Xiao-Lei. High-pressure Sintering and Microstructure Development of Aluminum Nitride Ceramics with Y2O3 as a Aintering Aid[J]. 材料研究学报, 2008, 22(4): 394-398.
No Suggested Reading articles found!