Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (9): 662-668    DOI: 10.11901/1005.3093.2015.729
ARTICLES Current Issue | Archive | Adv Search |
Fabrication of a High Vanadium High Speed Steel by Liquid Phase Sintering
Zhihua LI,Ping'an XIAO,Xia ZHANG,Ruiqing LU,Haibin LIU,Jinghong GU
School of Materials Science and Engineering, Hunan University, Changsha 410082, China
Cite this article: 

Zhihua LI,Ping'an XIAO,Xia ZHANG,Ruiqing LU,Haibin LIU,Jinghong GU. Fabrication of a High Vanadium High Speed Steel by Liquid Phase Sintering. Chinese Journal of Materials Research, 2016, 30(9): 662-668.

Download:  HTML  PDF(6198KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High speed steels with high V content (HVHSS, 10 mass % of V) were fabricated by a process of pressing plus super solid-liquid phase sintering (SLPS) with atomized alloy powder as raw material. The effect of sintering parameters such as sintering temperature and holding time on densification, microstructure evolution as well as mechanical properties were systematically investigated, and the composition, morphology and distribution of the phases existed in the alloy were carefully analyzed. The results show that sintering temperature is the most important parameter affecting the performance of the sintered alloys, however holding time shows the main effect on the precipitation and evolution of carbides. The matrix of the as prepared HVHSS consists of acicular martensite and retained austensite, and there are three types of carbides, i.e. VC, complex molybdenum carbide and complex chromium carbide. Small spherical VC particles mainly distribute in the grains and along their boundaries. As sintering temperature and holding time increased, not only grains and carbides gradually coarsened but also more and more carbides precipitated. However, the precipitation of complex carbides deteriorates the alloy’s strength and toughness due to their poor morphology which cause serious stress concentration or forming carbide network along grain boundaries. The HVHSS possess high performance, such as hardness HRC 65-68, impact toughness and bending strength over 6 J/cm2 and 1800 MPa respectively.

Key words:  metallic materials      HVHSS      SLPS      mechanical properties      carbide     
Received:  15 December 2015     
Fund: *Supported by National Natural Science Foundation of China No.51574119

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.729     OR     https://www.cjmr.org/EN/Y2016/V30/I9/662

Fig.1  Morphology of nitrogen atomized high vanadium cast iron powders
Fig.2  Effect of sintering temperature on density and hardness (holding time 2 h)
Fig.3  Effect of holding time on density and hardness (final sintering temperature 1245℃)
Fig.4  Effect of sintering temperature on microstructure (holding time 2 h) (a) 1235℃, (b) 1245℃, (c) 1255℃, (d) 1265℃, (e) 1275℃, (f) 1285℃, (g) 1295℃
Fig.5  XRD pattern of HVHSS with various sintering temperature
Fig.6  Effect of sintering temperature on grain size and carbide size
Fig.7  Effect of sintering holding time on microstructure (a) 30 min, (b) 60 min, (c) 90 min, (d) 120 min, (e) 150 min, (f) 180 min
Fig.8  Effect of sintering holding time on grain size and carbide size
Fig.9  Backscatter image of high vanadium steel prepared by powder metallurgy
Test point of EDS C V Cr Mo Cu Bal.
A 54.50 40.35 3.01 1.31 -- 0.83
B 19.86 1.25 4.79 0.51 1.22 72.37
C 55.75 34.31 4.47 1.65 -- 3.82
D 46.92 17.26 14.12 1.54 -- 20.15
E 43.92 6.76 17.98 1.21 0.43 29.70
Table 1  EDS analysis results of micro zone (atom fraction, %)
Fig.10  Effect of sintering temperature on impact toughness and bending strength
[1] K. C. Hwang, S. Lee, C. L. Hui, Effects of alloying elements on microstructure and fracture properties of cast high speed steel rolls partI: microstructural analysis, Materials Science & Engineering A, 254(1), 282(1998)
[2] LONG Yue, WEI Shizhong, LIU Yaming, Microstructure and properties of high vanadium high wear-resistant alloy, Mining Machine, 12, 54(2001)
[2] (龙锐, 魏世忠, 刘亚民, 高钒高耐磨合金的组织与性能, 矿山机械, 12, 54(2001))
[3] WEI Shizhong, LONG Yue, Development and use of high vanadium high wear-resistant alloy hammer, Cement, 8, 31(2001)
[3] (魏世忠, 龙锐, 高钒高耐磨合金锤头的研制与使用, 水泥, 8, 31(2001))
[4] G. Q. Shao, The preparation of Co WO/WO3 nanocomposite powder , Journal of Wuhan University of Technology, Mater. Sci. Ed., 19, 1(2004)
[5] T. Tanata, H. Takigawa, M. Hashimoto, The application and performance of high-speed-steel (HSS) rolls at hot rolling, 39th Mechanical Working and Steel Processing Conference Proceedings, Vol. XXXV, 435(1997)
[6] M. Hashimoto, T. Kawakami, R. Kurashashi,Characteristics and application of high-speed tool steel(HSS) rolls in hot strip rolling, ISS-AIME, 74, 55(1995)
[7] Y. M. Kuskov, High-alloy high speed steels for rollers, STAL, 1(4), 43(2004)
[8] A. A. Kvnonov, N. S. Salmanov, M. N. Salmanov, Cast high-vanadium high-speed steel, Litejnoe Proizvodstvo, 1(2), 5(2001)
[9] LIU Sha, HUANG Zelan, LIU Gang, Preparing nano-crystalline rare earth doped WC/Co powder by high energy ball milling, International Journal of Refractory Metals&Hard Materials, 13, 1(2005)
[10] HUANG Peiyun, Principle of Powder Metallurgy (Beijing, Metallurgical Industry Press, 1982)p.188
[10] (黄培云, 粉末冶金原理(北京, 冶金工业出版社, 1982)p.188)
[11] FAN Jinglian, HUANG Boyun, Densification mechanism of liquid phase sintered tungsten heavy alloy during initial solid stage sintering stage, The Chinese Journal of Nonferrous Metals, 8(A01), 36(1998)
[11] (范景莲, 黄伯云, 液相烧结高比重合金早期固相烧结阶段的致密化机理, 中国有色金属学报, 8(A01), 36(1998))
[12] JIA Yuze, YANG Maosheng, ZHOU Xiaolong, Effect of tempering temperature on the evolution of carbide and hardness of high-nitrogen bearing steel, Iron and Steel, 50(6), 81(2015)
[12] (贾钰泽, 杨卯生, 周晓龙, 回火温度对高氮轴承钢碳化物演变及硬度的影响, 钢铁, 50(06), 81(2015))
[13] FAN Yunying, ZHANG Yingjie, LUO Shaolin, Transformation of electrodeposited Fe-P amorphous coatings during process of heat-treatment, Transactions of Materials and Heat Treatment, 29(4), 140(2008)
[13] (范云鹰, 张英杰, 罗少林, 电沉积Fe-P 非晶镀层的受热转变, 材料热处理学报, 29(4), 140(2008))
[14] HUANG Yongbing, WANG Yongxin, CHEN Zheng, Phase field simulation of the second phase particle precipitation at boundaries and its pinning effect, Rare Metal Materials and Engeering, 41(10), 1751(2012)
[14] (黄勇兵, 王永欣, 陈铮, 相场法模拟第二相颗粒沿晶析出及其钉扎作用, 稀有金属材料与工程, 41(10), 1751(2012))
[15] WANG Panxin, Powder Metallurgy (Beijing, Metallurgical Industry Press, 2005)p.190
[15] (王盘鑫, 粉末冶金学(北京, 冶金工业出版社, 2005)p.190)
[16] Ministry of Metallurgical Industry Iron and Steel Institute, Steel Handbook (Beijing, China Industry Press, 1971)p.96
[16] (冶金工业部钢铁研究总院, 合金钢手册(北京, 中国工业出版社, 1971)p.96)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
No Suggested Reading articles found!