Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (8): 614-620    DOI: 10.11901/1005.3093.2016.050
Orginal Article Current Issue | Archive | Adv Search |
Study on Mechanical Property of TiAlN Coatings of Large Thickness
ZHAO Shengsheng1,**, MEI Haijuan2, CHENG Lvsha1, DING Jicheng2, WANG Qimin2
1. Shenzhen Polytechnic, Shenzhen 518055, China
2. Guangdong University of Technology, Guangzhou 510006, China
Cite this article: 

ZHAO Shengsheng, MEI Haijuan, CHENG Lvsha, DING Jicheng, WANG Qimin. Study on Mechanical Property of TiAlN Coatings of Large Thickness. Chinese Journal of Materials Research, 2016, 30(8): 614-620.

Download:  HTML  PDF(5625KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The mechanical property of TiAlN coatings of large thickness deposited on stainless steel substrate by arc ion plating (AIP) was systematically investigated. The results indicated that the thickness of the coatings deposited by AIP with the increasing flow of N2 by way of cycle or stepwise could reach 68.79 μm and 64.48 μm respectively, and those coatings show fairly well mechanical performance. The depth profile of residual stress of the coatings presented a general trend that the stress increased gradually from the coating/substrate interface to the top surface. The average compressive stress of the coatings is lower than 1 GPa, and its surface hardness almost reaches 2000 HV. The former coating has lower friction coefficient and wear rate, whereas the later one shows better coating/substrate adhesion.

Key words:  surface and interface in the materials      TiAlN      arc ion plating      nitrogen flow      large thickness      mechanical properties     
Received:  20 January 2016     
Fund: * Supported by National Natural Science Foundation of China No.51401128, Shenzhen Science and Technology Project NoJCYJ20140508155916426

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.050     OR     https://www.cjmr.org/EN/Y2016/V30/I8/614

Fig.1  The flow of N2 as a function of deposition time of the coatings with large thickness
Fig.2  SEM cross-section images of the coatings with large thickness deposited under gradient increasing (a) and circulatory increasing (b) the flow of N2
Fig.3  Composition distributions along the depth of the coatings with large thickness deposited under gradient increasing (a) and circulatory increasing (b) the flow of N2
Fig.4  Residual stress distributions along the depth of the coatings with large thickness deposited under gradient increasing and circulatory increasing the flow of N2
Fig.5  Cross-section microhardnessdistributions along the depthof the coatings with large thickness deposited under gradient increasing (a) and circulatory increasing (b) the flow of N2
Fig.6  Rockwell indentation morphology of the coatings with large thickness deposited under gradient increasing (a) and circulatory increasing (b) the flow of N2
Fig.7  Scratching test of the coatings with large thickness deposited under gradient increasing (a) and circulatory increasing (b) the flow of N2
Fig.8  Friction coefficientof the coatings with large thickness deposited under gradient increasing and circulatory increasing the flow of N2
Fig.9  Surface morphologies and components analysis of the coatings with large thickness after 120 min friction Test
Fig.10  Wear track profiles of the coatings with large thickness after 120 min friction test
1 H. Ollendorf, D. Schneider, Th. Schwarz, G. Kirchhoff, A. Mucha, A comparative study of the mechanical properties of TiN coatings using the non-destructive surface acoustic wave method, scratch test and four-point bending test, Surface and Coatings Technology, 84(1-3), 458(1996)
doi: 10.1016/S0257-8972(96)02853-8
2 W. D. Munz, Titanium aluminum nitride films: A new alternative to TiN coatings, Journal of Vacuum Science and Technology, 4(6), 2717(1986)
doi: 10.1116/1.573713
3 W. L. Pan, G. P. Yu, J.H.Huang, Mechanical properties of ion-plated TiN films on AISI D2 steel, Surface and Coatings Technology, 110(1-2), 111(1998)
doi: 10.1016/S0257-8972(98)00680-X
4 J. Richter, Application of Vickers indentation for assessment of PVD TiN coated new nonledeburitic high-speed steels, Surface and Coatings Technology, 162, 119(2003)
doi: 10.1016/S0257-8972(02)00567-4
5 T. Ikeda, H. Satoh, Phase formation and characterization of hard coatings in the TiAlN system prepared by the cathodic arc ion plating method, Thin Solid Films, 195(1-2), 99(1991)
doi: 10.1016/0040-6090(91)90262-V
6 H. Ichimura, A. Kawana, High-temperature oxidation of ion-plated TiN and TiAlN films, Journal of Materials Research, 8(5), 1093(1993)
7 J. W. Woo, J. K. Lee, S. R. Lee, D. B. Lee, High-temperature oxidation of Ti0.3Al0.2N0.5thin films deposited on a steel substrate by ion plating, Oxidation of Metals, 53, 529(2000)
doi: 10.1023/A:1004685010393
8 S. Inoue, H. Uchida, Y. Yoshinga, K. Koterazawa, Oxidation behavior of (Ti1-xAlx)N films perpared by r.f. reactive sputtering, Thin Solid Films, 300(1-2), 171(1997)
doi: 10.1016/S0040-6090(96)09503-X
9 H. G. Prengel, A. T. Santhanam, R. M. Penich, P. C. Jindal, K. H. Wendt, Advanced PVD-TiAlN coatings on carbide and cermet cutting tools, Surface and Coatings Technology, 94, 597(1997)
doi: 10.1016/S0257-8972(97)00503-3
10 A. N. Kale, K. Ravindranath, D. C. Kothari, P. M. Raole, Tribological properties of (Ti, Al)N coatings deposited at different bias voltages using the cathodic arc technique, Surface and Coatings Technology, 145(1-3), 60(2001)
doi: 10.1016/S0257-8972(01)01296-8
11 I. J. Smith, D. Gillibrand, J. S. Brooks, W. D. Münz, S. Harvey, R. Goodwin, Dry cutting performance of HSS twist drills coated with improved TiAlN, Surface and Coatings Technology, 90, 164(1997)
doi: 10.1016/S0257-8972(96)03113-1
12 M. Leoni, P. Scardi, S. Rossi, L. Fedrizzi, Y. Massiani, (Ti, Cr)N and Ti/TiN PVD coatings on 304 stainless steel substrates: Texture and residual stress, Thin Solid Films, 345(2), 263(1999)
doi: 10.1016/S0040-6090(98)01741-6
13 X. S. Wan, S. S. Zhao, Y. Yang, J. Gong, C. Sun, Effects of nitrogen pressure and pulse bias voltage on the properties of Cr-N coatings deposited by arc ion plating, Surface and Coatings Technology, 204(11), 1800(2010)
doi: 10.1016/j.surfcoat.2009.11.021
14 Q. Kong, L. Ji, H. Li, X. Liu, Y. Wang, J. Chen, H. Zhou, Influence of substrate bias voltage on the microstructure and residual stress of CrNfilms deposited by medium frequency magnetron sputtering, Materials Science and EngineeringB, 176(11), 850(2011)
doi: 10.2298/PAC1104215B
15 R. Manaila, A. Devenyi, D. Biro, L. David, P. B. Barna, A. Kovacs, Multilayer TiAlN coatings with composition gradient, Surface and Coatings Technology, 151, 21(2002)
doi: 10.1016/S0257-8972(01)01633-4
16 E. Vogli, W. Tillmann, U. Selvadurai-Lassl, G. Fischer, J. Herper, Influence of Ti/TiAlN-multilayer designs on their residual stresses and mechanical properties, Applied Surface Science, 257, 8550(2011)
doi: 10.1016/j.apsusc.2011.05.013
17 ZHAO Shengsheng, CHENG Yu, CHANG Zhengkai, WANG Tiegang, SUN Chao, Modification of stress distribution along the thickness of (Ti, Al)N coatings and Preparation of the coatings with large thickness, ActaMetallurgicaSinica, 48(3), 277(2012)
(赵升升, 程毓, 常正凯, 王铁钢, 孙超, (Ti, Al)N涂层应力沿层深分布的调整及大厚度涂层的制备, 金属学报, 48(3), 277(2012))
doi: 10.3724/SP.J.1037.2011.00504
18 WU Ping, ZHOU Changchi, TANG Xinan, Preparation of wear-resistant graded metal-ceramic coating by laser-alloying, ActaMetallurgicaSinica, 30(11), 508(1994)
(吴萍, 周昌炽, 唐西南, 激光合金化熔覆制备耐磨陶瓷梯度涂层, 金属学报, 30(11), 508(1994))
doi: 10.1007/BF02943514
19 S. PalDey, S. C. Deevi, Properties of single layer and gradient (Ti, Al)N coatings, Materials Science Engineering, 361(1-2), 1(2003)
doi: 10.1016/S0921-5093(03)00473-8
20 J. H. Huang, C. H. Ma, H. Chen, Effect of Ti interlayer on the residual stress and texture development of TiN thin films deposited by unbalanced magnetron sputtering, Surface and Coatings Technology, 201(6), 3199(2006)
doi: 10.1016/j.surfcoat.2005.09.005
21 K. L. Lin, W. H. Chao, C. D. Wu, The performance and degradation behaviours of the TiAln/interlayer coatings on drills, Surface and Coatings Technology, 89(3), 279(1997)
doi: 10.1016/S0257-8972(96)03015-0
22 D. Y. Wang, C. L. Chang, K. W. Wong, Y. W. Li, W. Y. Ho, Improvement of the interfacial integrity of (Ti, Al)N hard coatings deposited on high speed steel cutting tools, Surface and Coatings Technology, 120, 388(1999)
doi: 10.1016/S0257-8972(99)00452-1
23 H. M. Tung, J. H. Huang, D. G.Tsai, C. F. Ai, G. P. Yu, Hardness and residual stress in nanocrystallineZrN films: Effect of bias voltage and heat treatment, Materials Science and Engineering, 500(1-2), 104(2009)
doi: 10.1016/j.msea.2008.09.006
24 S. S. Zhao, H. Du, W. G. Hua, J. Gong, J. B. Li, C. Sun, The depth distribution of residual stresses in (Ti, Al)N films: Measurement and analysis, Journal of Materials Research, 22(10), 2659(2007)
doi: 10.1557/JMR.2007.0363
25 W. Heinke, A. Leyland, A. Matthews, Evaluation of PVD nitride coatings, using impact, scratch and Rockwell-c adhesion test, Thin Solid Films, 270, 431(1995)
doi: 10.1016/0040-6090(95)06934-8
26 S. S. Zhao, Y. Yang, J. B. Li, J. Gong, C. Sun, Effect of deposition processes on residual stress profiles along the thickness in (Ti, Al)N films, Surface and Coatings Technology, 202(21), 5185(2008)
doi: 10.1016/j.surfcoat.2008.06.048
27 S. S. Zhao, S. H. Zhou, H. Y. Yu, T. C. Kuang, D. C. Zeng, Effects of TiN Films Thickness on Mechanical Properties of Stainless Steel, Chinese Journal of Vacuum Science and Technology, 36(3), 291(2016)
(赵升升, 周晟昊, 余红雅, 匡同春, 曾德长, 厚度对TiN薄膜力学性能的影响, 真空科学与技术学报, 36(3), 291(2016))
doi: 10.13922/j.cnki.cjovst.2016.03.08
28 B. R. Lawn, M. V. Swain, Microfracture beneath point indentations in brittle solids, Journalof Materials Science, 10(1), 113(1975)
doi: 10.1007/BF00541038
29 C. B. Ponton, R. D. Rawlings, Vickers indentation fracture toughness test Part 2 Application and critical evaluation of standardised indentation toughness equations, Materials Scienceand Technology, 5(10), 961(1989)
30 Y. S. Hong, S. H. Kwon, T. G. Wang, D. I. Kim, J. Choi, K. H. Kim, Effects of Cr interlayer on mechanical and tribological properties of Cr-Al-Si-N nanocomposite coating, Transaction of Nonferrous Metals Society of China, 21, s62(2011)
doi: 10.1016/S1003-6326(11)61062-5
31 SHAN Lei, CHEN Gang, CHEN Leping, CHEN Jian, On tribologicalproperties of PVD thick CrNcoating in seawater environment, Journal of Zhejiang Textile and Fashion College, 13(3), 85(2014)
(单磊, 陈罡, 陈乐平, 陈健, PVD大厚度CrN涂层海水环境摩擦学性能研究, 浙江纺织服装职业技术学院学报, 13(3), 85(2014))
doi: 10.3969/j.issn.1674-2346.2014.03.019
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[4] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[5] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[6] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[7] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[8] CHEN Zhipeng, ZHU Zhihao, SONG Mengfan, ZHANG Shuang, LIU Tianyu, DONG Chuang. An Ultra-high-strength Ti-Al-V-Mo-Nb-Zr Alloy Designed from Ti-6Al-4V Cluster Formula[J]. 材料研究学报, 2023, 37(4): 308-314.
[9] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[10] ZHAO Yunmei, ZHAO Hongze, WU Jie, TIAN Xiaosheng, XU Lei. Effect of Heat Treatment on Microstructure and Properties of TIG Welded Joints of Powder Metallurgy Inconel 718 Alloy[J]. 材料研究学报, 2023, 37(3): 184-192.
[11] LIU Dongyang, TONG Guangzhe, GAO Wenli, WANG Weikai. Anisotropy of 2060 Al-Li Alloy Thick Plate[J]. 材料研究学报, 2023, 37(3): 235-240.
[12] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] YU Cong, CHEN Leping, JIANG Hongxiang, ZHOU Quan, YANG Chenggang. Effect of Deep Cryogenic-Aging Treatment on Microstructure and Mechanical Properties of 7075 Al-alloy[J]. 材料研究学报, 2023, 37(2): 120-128.
[14] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[15] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
No Suggested Reading articles found!