Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (7): 509-516    DOI: 10.11901/1005.3093.2015.185
Orginal Article Current Issue | Archive | Adv Search |
Evolution of Grain Orientation and Texture of Ring Shaped Blank Induced by Hot Compression During Casting-rolling Process
QIN Fangcheng, LI Yongtang**()
School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
Cite this article: 

QIN Fangcheng, LI Yongtang. Evolution of Grain Orientation and Texture of Ring Shaped Blank Induced by Hot Compression During Casting-rolling Process. Chinese Journal of Materials Research, 2016, 30(7): 509-516.

Download:  HTML  PDF(6560KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The characteristics for the evolution of grain orientation and texture of ring shaped blanks of sand- and centrifugal-casting Q235B respectively were investigated by electron backscatter diffraction (EBSD) technique, while the blanks have been subjected to hot compression with a strain rate of 0.1 s-1 at different temperatures. The results show that the grain size of the blanks after hot compression at 1000℃ becomes smaller in the deformed microstructure, but a few grains maintains as in cast state. The mechanisms of the microstructure evolution may be ascribed to dynamic recovery and large strain geometric dynamic recrystallization. For centrifugal cast ones, the percentage of high-angle boundary in 20°-50° is 22%, but after hot compression at 1100℃ it shows a homogenous microstructure with equiaxed grains because of sufficient recrystallization, while the mis-orientation distribution of grain boundaries still presents a typical characteristic of double-peaks and the proportion of the high-angle boundaries reaches to 60%-75%. The textures of sand casting Q235B are a small amount cube texture {001}<100> and {001}<110> along <001>//ND at 1000℃, while the main textures are Goss texture {110}<001> and r-cube texture {110}<001> at 1100℃. For centrifugal casting ones at 1000℃, {110}<110> and Cu texture {112}<111> distributes along ε orientation; at 1100℃ the types of texture including {001}<110> and {111}<110> transformed from {111}<112> along γ orientation. The orientation density is higher due to the high extent of recrystallization.

Key words:  metallic materials      as-cast Q235B ring blank      EBSD      grain orientation      texture      recrystallization     
Received:  07 August 2015     
Fund: *Supported by National Natural Science Foundation of China Nos.51135007&51174140&51205270, Doctoral Program of Higher Education of China No.20111415130001, and Research Project Supported by Shanxi Scholarship Council of China No.2011-084

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.185     OR     https://www.cjmr.org/EN/Y2016/V30/I7/509

Fig.1  True stress-strain curves of hot compression of Q235B ring blanks (a)sand casting and (b)centrifugal casting
Fig.2  Microstructure constructed by EBSD for sand casting (Red line: >15°, green line: <15°) (a) 1000℃/0.1 s-1, (b) 1100℃/0.1 s-1
Fig.3  Microstructure constructed by EBSD for centrifugal casting (Red line: >15°, green line: <15°) (a) 1000℃/0.1 s-1, (b)1100℃/0.1 s-1
Fig.4  Misorientation distribution of sand casting Q235B (a) 1000℃/0.1 s-1 and (b) 1100℃/0.1 s-1
Fig.5  Misorientation distribution of centrifugal casting Q235B (a) 1000℃/0.1 s-1 and (b) 1100℃/0.1 s-1
Fig.6  ?2=45° section of ODF for sand casting Q235B ring blank (a) 1000℃/0.1 s-1 and (b) 1100℃/0.1 s-1
Fig.7  ?2=45° section of ODF for centrifugal casting Q235B ring blank (a)1000℃/0.1 s-1 and (b) 1100℃/0.1 s-1
Fig.8  Pole figure of sand casting ring blank under different deformation condition (a) at 1000℃/0.1 s-1 and (b) at 1100℃/0.1 s-1
Fig.9  Pole figure of centrifugal casting ring blank under different deformation condition (a) at 1000℃/0.1 s-1 and (b) at 1100℃/0.1 s-1
1 LI Hongwei, YANG He, Prediction of texture evolution under varying deformation states through crystal plasticity finite element method, Trans. Nonferrous Met. Soc. China, 22, s222(2012)
doi: 10.1016/S1003-6326(12)61712-9
2 LI Hongwei, FENG Lu, YANG He, Deformation mechanism of cold ring rolling in view of texture evolution prediction by a new proposed polycrystal plasticity model, Trans. Nonferrous Met. Soc. China, 23, 3729(2013)
3 S. V. S.Narayana Murty, N. Nayan, P. Kumar, P. R. Narayanan, S.C. Sharma, K. M. George, Microstructure-texture-mechanical properties relationship in multi-pass warm rolled Ti-6Al-4V alloy, Materials Science & Engineering A, 589, 174(2014)
4 Valerie Randle, Olaf Engler, Introduction to texture analysis: macro-texture, micro-texture & orientation mapping, Gordon and Breach Science Publishers, London(2000)
5 TANG Weiqin, ZHANG Shaorui, FAN Xiaohui, LI Dayong, PENG Yinghong, Texture and its effect on mechanical properties of AZ31 magnesium alloy, The Chinese Journal of Nonferrous Metals, 20(3), 271(2010)
(唐伟琴, 张少睿, 范晓慧, 李大永, 彭颖红, AZ31镁合金的织构对其力学性能的影响, 中国有色金属学报, 20(3), 271(2010))
6 W. C. Jeong, Effect of hot-rolling temperature on microstructure and texture of an ultra-low carbon Ti-interstitial-free steel, Materials Letters, 62, 91(2008)
doi: 10.1016/j.matlet.2007.04.081
7 K. Ryttberg, M. Knutson Wedel, V. Recina, P. Dahlman, L. Nyborg, The effect of cold ring rolling on the evolution of microstructure and texture in 100Cr6 steel, Materials Science and Engineering A, 527, 2431(2010)
doi: 10.1016/j.msea.2009.12.016
8 LI Yongtang, JU Li, QI Huiping, ZHANG Feng, CHEN Guozhen, WANG Mingli, Technology and experiments of 42CrMo bearing ring forming based on casting ring blank, Chinese Journal of Mechanical Engineering, 27(2), 417(2014)
doi: 10.3901/CJME.2014.02.418
9 CHEN Huiqin, BAI Jinxin, QI Huiping, FU Jianhua, LI Yongtang, Establishment of hot processing maps and hot ring rolling process of 42CrMo steel, Journal of Mechanical Engineering, 50(16), 89(2014)
(陈慧琴, 柏金鑫, 齐会萍, 付建华, 李永堂, 42CrMo钢热加工图的建立与热辗扩成形工艺, 机械工程学报, 50(16), 89(2014))
doi: 10.3901/JME.2014.16.089
10 J. A. Valle, M. Prado, O. A. Ruano, Texture evolution during large-strain hot rolling of the Mg AZ61 alloy, Materials Science and Engineering A, 355, 68(2003)
doi: 10.1016/S0921-5093(03)00043-1
11 S. E. Ion, F. J. Humphreys, S. H. White, Dynamic recrystallization and the development of microstructure during the high temperature deformation of magnesium, Acta Metallurgica, 30, 1909(1982)
doi: 10.1016/0001-6160(82)90031-1
12 LIU Xiao, LOU Yan, LI Luoxing, ZHU Biwu, HE Fengyi, Grain orientation and texture evolution of AZ31 magnesium alloy during hot compression, The Chinese Journal of Nonferrous Metals, 22(8), 2141(2012)
(刘筱, 娄燕, 李落星, 朱必武, 何凤亿, AZ31镁合金热压缩过程中晶粒取向和织构的演变, 中国有色金属学报, 22(8), 2141(2012))
13 YANG Ping, Technology and applications of electron backscatter diffraction, (Beijing, Metallurgical Industry Press), 2007
(杨平, 电子背散射衍射技术及其应用, (北京, 冶金工业出版社)(2007)
14 CHEN Jiaguang, CAO Shengquan, EBSD of microstructure in low carbon steel, Physics Examination and Testing, 23(2), 1(2005)
(陈家光, 曹圣泉, 低碳钢显微结构的EBSD表征, 物理测试, 23(2), 1(2005))
doi: 10.3969/j.issn.1001-0777.2005.02.001
15 AN Jinmin, DING Yi, QIN Ming, Effect of rolling processes on the cold rolled texture in bcc metal, Baosteel Technology, 6, 48(2013)
(安金敏, 丁毅, 覃明, 轧制工艺对体心立方金属冷轧织构的影响, 宝钢技术, 6, 48(2013))
doi: 10.3969/j.issn.1008-0716.2013.06.011
16 QIN Fangcheng, Hot deformation and microstructure evolution of Q235B based on casting-rolling compound forming, MD thesis, Taiyuan University of Science and Technology(2014)
(秦芳诚, 环件铸辗复合成形中Q235B钢热变形及组织演变研究, 硕士学位论文, 太原科技大学(2014))
17 YAN Honghong, LI Yongtang, HU Yong, LI Qiushu, ZHAO Dawen, CAO Zhengzheng, Study on the microstructure and mechanical properties of Q235B ring casting blank, Journal of Mechanical Engineering, 50(14), 89(2014)
(闫红红, 李永堂, 胡勇, 李秋书, 赵达文, 曹争争, Q235B环形铸坯显微组织和力学性能的研究, 机械工程学报, 50(14), 89(2014))
doi: 10.3901/JME.2014.14.089
18 R. K. Ray, J. J. Jonas, R. E. Hook, Cold rolling and annealing textures in low carbon and extra low carbon steels, International Materials Reviews, 39(4), 128(1994)
doi: 10.1179/095066094790326112
19 YANG Ping, GAO Peng, SUN Zuqing, Local deformation inhomogeneities in compressed low carbon steels, Materials Science Technology, 13(6), 657(2005)
(杨平, 高鹏, 孙祖庆, 低碳钢压缩时的微观形变不均匀性, 材料科学与工艺, 13(6), 657(2005))
doi: 10.3969/j.issn.1005-0299.2005.06.028
20 WANG Zhigang, ZHAO Aimin, YE Jieyun, ZHAO Zhengzhi, Microstructure and textural evolution of micro-carbon DP steel during the heating stage of continued annealing process, Chinese Journal of Materials Research, 27(16), 561(2013)
(汪志刚, 赵爱民, 叶洁云, 赵征志, 微碳DP钢在连续退火加热段的组织与织构演变, 材料研究学报, 27(16), 561(2013))
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!