Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (7): 517-523    DOI: 10.11901/1005.3093.2015.307
Orginal Article Current Issue | Archive | Adv Search |
Microstructure and Toughness of Heat-affected Zone of Weld Joint for Pipeline Steels with High Deformability
JIA Shujun1,**(), WANG Yuanfang2, TAN Fengliang3, LIU Qingyou1
1. China Iron & Steel Research Institute, Beijing 100081, China
2. Liaohe Oilfield Company, China National Petroleum Corporation, Panjin 124010, China
3. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
Cite this article: 

JIA Shujun, WANG Yuanfang, TAN Fengliang, LIU Qingyou. Microstructure and Toughness of Heat-affected Zone of Weld Joint for Pipeline Steels with High Deformability. Chinese Journal of Materials Research, 2016, 30(7): 517-523.

Download:  HTML  PDF(8070KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Welding thermal cycle process of test steels containing different Nb was investigated under different heat inputs with a Gleeble-3800 thermo-mechanical simulator. The microstructural characteristics of the coarse-grained heat-affected zone (CGHAZ) were observed by using optical microscope (OM), scanning electron microscope (SEM) and electron backscatter diffraction (EBSD), while their impact toughness was tested. The results indicate that with the increasing heat input, lath bainite transformed gradually into granular bainite, and the size and proportion of M/A islands increased, while the average grain size also increased. Under the same heat input, austenite in high Nb steel was refined obviously, with more dispersive and refined M/A islands distributed in the microstructure of high Nb steel, and the proportion of high angle boundaries was high. With the increasing heat input, the impact toughness of steels decreased sharply. The critical heat input value for a sharp decrease in impact toughness were approximately 35 kJ/cm for high Nb steel and 25 kJ/cm for low Nb steel. However, the impact toughness of the high Nb steel was significantly higher than that of the lower Nb steel in the range of experimental parameters.

Key words:  metallic materials      high-deformability pipeline steel      CGHAZ      heat input      grain size      M/A islands      toughness     
Received:  13 August 2015     
Fund: *Supported by National High Technology Researchand Development Program of China No.2013AA09A219

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.307     OR     https://www.cjmr.org/EN/Y2016/V30/I7/517

No. C Si Mn Nb V Ti Cu Ni Cr Ceq Pcm
A steel 0.06 0.33 1.68 0.03 0.009 0.017 0.24 0.23 0.19 0.41 0.18
B steel 0.06 0.22 1.66 0.08 0.002 0.015 0.19 0.22 0.21 0.40 0.17
Table 1  Composition analysis of test steels (%, mass fraction)
No. Rm
/MPa
Rp0.2
/MPa
Rt0.5
/MPa
Rt1.0
/MPa
Rt1.5
/MPa
Rt2.0
/MPa
Rt0.5
/Rm
A50
/%
n UEL
/%
A steel 723 508 530 579 613 635 0.73 22 0.12 12
B steel 725 498 546 587 611 632 0.75 21.5 0.12 11.5
Table 2  Mechanical properties of test steels
Fig.1  Microstructure morphology of test steels (a) A steel; (b) B steel
Fig.2  Process of welding thermal simulation
Fig.3  Effect of heat input on microhardness and toughness of test steels (a) microhardness, (b) toughness
t8/3(s) 15 25 30 45 60 100 150
Heat inputs (kJ/cm) 16.15 20.85 22.84 27.97 32.3 41.7 51.07
Table 3  Relationship between T8/3 and heat inputs
Fig.4  Austenite morphology of two test steels in 16 kJ/cm (a) A steel; (b) B steel
Fig.5  Microstructure of two test steels in different heat inputs(a) ~(c) A steel; (d) ~ (f) B steel (a) and (d): 16 kJ/cm; (b) and (e): 28 kJ/cm; (c) and (f): 51 kJ/cm
Fig.6  SEM of test steel in 16 kJ/cm (a) A steel; (b) B steel
Fig.7  TEM of B steel in 16 kJ/cm (a) Parallel ferrite lath; (b) M/A island
Fig.8  SEM of B steel in different heat inputs (a) 32 kJ/cm; (b) 41 kJ/cm
Fig.9  Orientation maps of bcc phase in the samples welded under heat inputs of 20.8 kJ/cm and 51 kJ/cm and inverse pole figure (IPF) legend (a), (b): 20.8 kJ/cm; (c), (d): 51 kJ/cm; (a), (c) maps of grain boundary distribution; (b), (d) maps of orientation imaging
1 N. Suzuki, M. Toyoda, Seismic loading on buried pipelines and deformability of high strength linepipes, Proceedings of International Conference on the Application and Evaluation of High-Grade Linepipes in Hostile Environments, Yokohama, Japan: Scientific Surveys Ltd, (601)2002
2 S. Endo, M. Kurihala, A. Suzuki, High strength linepipe having superior buckling resistance, Materials Japan, 39(2), (166)2009
3 LI Helin, FENG Yaorong, HUO Chunyong, Issues concerning the West-East pipeline and pipe, Oil Country Tubular Goods, 10(1), 1(2002)
(李鹤林, 冯耀荣, 霍春勇, 关于西气东输管线和钢管的若干问题, 石油专用管, 10(1), 1(2002))
4 LI Helin., Strain-based design of oil and gas pipeline and development of High-deformablity Pipeline Steel, Welded Pipe and Tube, 30(5), 5(2007)
(李鹤林, 油气管道基于应变的设计及抗大变形管线钢的开发和应用, 焊管, 30(5), 5(2007)
doi: 10.3969/j.issn.1001-3938.2007.05.001
5 C. L. Davis, J. K. King, Cleavage initiation in the intercritically reheated coarse-grained heat-affected zone, Metallurgical TransactionsA, 25(3), 563(1994)
6 B. C. Kim, S. Lee, N. J. Kim, Microstructure and local brittle zone phenomena in high strength low-alloyed Welds, Metallurgical Transactions A, 22(1), 139(1991)
doi: 10.1007/BF03350956
7 K. Ohya, J. Kim, K. Yokoyama, Microstructures relevant to brittle fracture initiation at the heat-affected zone of weldment of a low carbon steel, Metallurgical and Materials Transactions A, 27(9), 2574(1996)
doi: 10.1007/BF02652351
9 J. W. Cahn, The impurity-drag effect in grain boundary motion, ActaMetallurgica, 10(9), 789(1962)
doi: 10.1016/0001-6160(62)90092-5
10 C. R. Hutchinson, H. S. Zurob, C. W. Sinclair, The comparative effectiveness of Nb solute and NbC precipitates at impeding grain-boundary motion in Nb steels, ScriptaMaterialia, 59(6), 635(2008)
doi: 10.1016/j.scriptamat.2008.05.036
11 MIAO Chengliang, LIU Zhenwei, GUO Hui, Effect of Nb content and heat input on coarse-grained welding heat affected zone of X80 pipeline steels, Transactions of Materials and Heat Treatment, 33(1), 99(2012)
(缪成亮, 刘振伟, 郭晖, Nb含量和热输入量对X80管线钢焊接粗晶区的影响, 材料热处理学报, 33(1), 99(2012))
12 JIA Shujun, DUAN Linna, LIU Qingyou., Research on alloy design for X100 hot-rolled strip, Transactions of Materials and Heat Treatment, 33(12), 76(2012)(贾书君, 段琳娜, 刘清友, X100热轧钢带的成分设计, 材料热处理学报, 33(12), 76(2012))
13 YONG Qilong, MA Mingtu, WU Baorong, Micro-alloy steel-physical and mechanical metallurgy, (Beijing, China Machine Press, 1989) p.105
(雍岐龙, 马鸣图, 吴宝榕, 微合金钢-物理和力学冶金, (北京, 机械工业出版社, 1989)p.105)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] CHEN Jingjing, ZHAN Huimin, WU Hao, ZHU Qiaolin, ZHOU Dan, LI Ke. Tensile Mechanical Performance of High Entropy Nanocrystalline CoNiCrFeMn Alloy[J]. 材料研究学报, 2023, 37(8): 614-624.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!