Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (6): 465-472    DOI: 10.11901/1005.3093.2016.101
ARTICLES Current Issue | Archive | Adv Search |
Effect of V on Microstructure and High Temperature Creep Properties of Diretional Solidified Nickel-base Superalloys
YU Xingfu1,*(), ZHOU Jinhua1, WU Yuchao1, YANG Yue1, WANG Yufei2, MAN Yanlin2, HUANG Aihua3
1. School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2. AVIC Power Shenyang Investment Casting Technology Co. Ltd., Shenyang 110043, China
3. AVIC Commercial Aircraft Engine Co., Ltd., Shanghai 200241, China
Cite this article: 

YU Xingfu, ZHOU Jinhua, WU Yuchao, YANG Yue, WANG Yufei, MAN Yanlin, HUANG Aihua. Effect of V on Microstructure and High Temperature Creep Properties of Diretional Solidified Nickel-base Superalloys. Chinese Journal of Materials Research, 2016, 30(6): 465-472.

Download:  HTML  PDF(1588KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of alloying element V on the microstructure and high temperature creep properties of a diretional solidified nickel-base superalloy was researched by varying the amount of V addition. The alloy composition was set in a controlled fixedness except for element V, and then the effect of V can be assessed. The alloys were directionally solidified by utilizing Bridgeman casting process and followed by appropriate post heat treatment. The microstructure and high temperature creep properties of the prepared alloys were then characterized. The results shown that, with lower amount of V addition, the alloying V existed mainly in acicular type carbides rather than in blocky type carbides; while for the higher addition of V, the shape of vanadium carbides in the alloys transition from acicular type to blocky type. When the V content reaches 1.04 % in the alloy, the shape of carbides has been transformed into blocky type completely. After solid solution treatment, the carbides in the alloy were dissolved partly, and the acicular carbides in the alloy with lower V content dissolved much more than the blocky carbides in high V content alloy. Under the condition of 980℃/216 MPa and 760℃/725 MPa, the stress rupture life is shorter for the alloy with lower V content, but loger for that with higher V content. The amount of M23C6 type carbide precipitated at grain boundaries in the alloy with higher V content is less than that with lower V content during creep test and aging heat treatment. During creep test, cracks initiate and grow mainly at the MC type carbide within grains or the M23C6 type carbides precipitated at the grain boundaries. Therefore, the increase of V content is of benefit for the improvement of creep life of the alloy.

Key words:  metallic materials      effect of vanadium      microstructure      nickel-base alloy      creep     
Received:  25 February 2016     
ZTFLH:  TG146.1  
About author:  *To whom correspondence should be addressed, Tel: (024)25496301, Email: yuxingfu@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.101     OR     https://www.cjmr.org/EN/Y2016/V30/I6/465

C Cr Al Mo Ti Co V B Ni
Alloy 1 0.147 9.03 5.22 3.05 4.67 10.23 0.62 0.015 Bal.
Alloy 2 0.145 9.01 5.26 3.04 4.67 10.24 0.96 0.016 Bal.
Alloy 3 0.146 9.00 5.28 3.06 4.65 10.23 1.04 0.015 Bal.
Table 1  Nominal composition of bars (%, mass fraction)
Fig.1  Schematic diagram of creep specimen (unit: mm)
Fig.2  Morphologies of carbides in nickel-base columnar crystal superalloy (a) Alloy1, (b) Alloy2, (c) Alloy3
Fig.3  Morphologies of γ' phase in the nickel-base superalloy (a) as-cast, (b) after heat treatment
Fig.4  Morphologies of carbides in nickel-base superalloy after solution (a) Alloy1, (b) Alloy2, (c) Alloy3
Fig.5  Carbides precipitated from grain boundary after fully heat treatment (a) Alloy1, (b) Alloy3
Fig. 6  Morphologies of carbides and EDAX, (a) morphology of rod like carbides, (b) energy spectrum curve of rod like carbide, (c) morphology of bulk like carbides, (d) energy spectrum curve of bulk like carbide
Fig.7  XRD results of extraction from as-cast alloy
Fig.8  Creep curves of various V content alloys under the condition of 980℃/216 MPa
Fig.9  Creep curves of different V content alloys under the condition of 760℃/725 MPa
Co Cr Ti Al Mo V Ni
Alloy1 Rod like carbide 10.68 9.97 6.94 4.45 4.48 0.56 Bal.
Bulk like carbide 0.09 2.24 57.1 -- 32.8 4.60 Bal.
Matrix 11.03 9.26 4.66 4.36 2.16 0.36 Bal.
Alloy3 Bulk like carbide -- 1.87 66.5 -- 21.8 6.96 Bal.
Matrix 10.60 8.92 4.95 4.76 2.83 0.79 Bal.
Table 2  Chemical composition of phases in the alloy (%, mass fraction)
Fig.10  Decomposition of the carbide during creep (a) creep 57 h under the condition of 980℃/216 MPa, (b) creep 1100 h under the condition of 760℃/500 MPa
Fig.11  Morphology of crack around the carbide
1 J. R. Mihalisin, Some effects of carbon in the production of single crystal superalloy castings, Superalloys, 795(2004)
doi: 10.7449/2004/Superalloys_2004_795_800
2 YU Zhuhuan, LIU Lin, ZHAO Xinbao, ZHANG Weiguo, ZHANG Jun, FU Hengzhi, Advance in research of carbon effect on single crystal Ni-base Superalloy, Foundry, 58(9), 918(2009)
(余竹焕, 刘林, 赵新宝, 张卫国, 张军, 傅恒志, 碳在镍基单晶高温合金中作用研究的进展, 铸造, 58(9), 918(2009))
3 R. W. Kozar, A. Suzuki, W. W. Milligan, J. J. Schirra, M. F. Savage, T. M. Pollock, Strengthening mechanisms in polycrystalline multimodal Nickel-base superalloys, Metallurgical and Materials Transactions A, 40(7), 1588(2009)
doi: 10.1007/s11661-009-9858-5
4 LIU Lirong, SUN Xintao, JIN Tao, KANG Yuping, Effect of carbon content on the as-cast microstructures in a nickel base single crystal superalloy, Foundry, 56(6), 635(2007)
(刘丽荣, 孙新涛, 金涛, 康煜平, 碳对一种单晶镍基高温合金铸态组织的影响, 铸造, 56(6), 635(2007))
doi: 10.3321/j.issn:1001-4977.2007.06.019
5 Q. Z. Chen, N. Jones, D. M. Knowles, The microstructures of base/modified RR2072 SX superalloys and their effects on creep properties at elevated temperatures, Acta Materialia, 50(5), 1095(2002)
doi: 10.1016/S1359-6454(01)00410-4
6 N. D. Evans, P. J. Maziasz, R. W. Swindeman, G. D. Smith, Microstructure and phase stability in INCONEL alloy 740 during creep, Scripta Materialia, 51(6), 503(2004)
doi: 10.1016/j.scriptamat.2004.05.047
7 J. S. Bae, J. H. Lee, S. SKim, C. Y. Jo, Formation of MC-γ/γ′ eutectic fibers and their effect on stress rupture behavior in D/S Mar-M247LC superalloy, Scripta Materialia, 45(5), 503(2001)
8 L. Zheng, C. Q. Gu, Y. R. Zheng, Investigation of the solidification behavior of a new Ru-containing cast Ni-base superalloy with high W content, Scripta Materialia, 50(4), 435(2004)
doi: 10.1016/j.scriptamat.2003.11.009
9 Q. Z. Chen, C. N. Jones, D. M. Knowles, Effect of alloying chemistry on MC carbide morphology in modified RR2072 and RR2086 SX superalloys, Scripta Materialia, 47(10), 669(2002)
doi: 10.1016/S1359-6462(02)00266-X
10 B. F. Hu, H. M. Chen, D. Song, H. Y. Li, Research on MC type carbide in nickel-base superalloy powders during rapid solidification, Acta Metallurgica Sinica, 41(10), 1042(2005)
doi:
11 B. M. Ge, L. Liu, S. X. Zhang, J. Zhang, Y. F. Li, H. Z. Fu, Influence of withdrawal rate on microstructure of blade shaped directionally solidified DZ125 superalloy, Acta Metallurgica Sinica, 47(11), 1470(2011)
doi: 10.3724/SP.J.1037.2011.00355
12 Z. X. Min, J. W. Shen, L. S. Wang, Z. R. Feng, L. Liu, H. Z. Fu, Microstructural evolution of directionally solidified Ni-base superalloy DZ125 under planar growth, Acta Metallurgica Sinica, 46(9), 1075(2010)
doi: 10.3724/SP.J.1037.2010.00185
13 J. X. Yang, Q. Zheng, X. F. Sun, H. R. Guan, Z. Q. Hu, Morphological evolution of MC carbide in K465 superalloy, Journal of Materials Science, 41(19), 6476(2006)
doi: 10.1007/s10853-006-0684-5
14 A. M.Wustowska-sarnek, B. Dubiel, A. Czyrska-filemonowicz, P.R. Bhowal, N. Ben Salah, J.E. Klemberg-sapieha, Microstructural characterization of the white etching layer in nickel-based superalloy, Metallurgical and Materials Transactions A, 42(12), 3813(2011)
doi: 10.1007/s11661-011-0779-8
15 J. T. Guo, C. Yuan, H. C. Yang, V. Luping, M. Maldini, Creep rupture behavior of a directionally solidified nickel base superalloy, Metallurgical and Materials Transactions A, 32(5), 1103(2001)
doi: 10.1007/s11661-001-0121-y
16 X. Z. Qin, J. T. Guo, C. Yuan, C. L. Chen, J. S. Hou, H. Q. Ye, Decomposition of primary MC carbide and its effects on the fracture behaviors of a cast Ni-base superalloy, Materials Science and Engineering A, 485, 74(2008)
doi: 10.1016/j.msea.2007.07.055 pmid: 25022762
17 J. X. Yang, Q. Zheng, X. F. Sun, H. R. Guan, Z. Q. Hu, Morphological evolution of MC carbide in K465 superalloy, J. Mater. Sci., 41, 6476(2006)
18 H. W. Jeong, S. M.Seo1, B. G. Choi1, Y. S. Yoo1, Y. K. Ahn1, J. H. Lee, Effect of long-term thermal exposures on microstructures and mechanical properties of directionally solidified CM247LC alloy, Met. Mater. Int., 19(5), 917(2013)
doi: 10.1007/s12540-013-5003-5
19 E. Lvova, D. Norsworthy, Influence of service-induced microstructural changes on the aging kinetics of rejuvenated Ni-based superalloy gas turbine blades, Journal of Materials Engineering and Performance, 10, 299(2001)
doi: 10.1361/105994901770345015
20 G. Lvov, V. I. Levit,M. J. Kaufman, Mechanism of primary MC carbide decomposition in Ni-base superalloys, Metallurgical and Materials Transactions A, 35, 1669(2004)
doi: 10.1007/s11661-004-0076-x
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!