Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (6): 457-464    DOI: 10.11901/1005.3093.2015.551
ARTICLES Current Issue | Archive | Adv Search |
Effect of Hard Magnetic Filler and Magnetization on Magneto-control Mechanical Behavior ofMagneto-active Elastomers
ZHAO Huiting1, LIAO Changrong1,**(), ZHANG Peng1, JIAN Xiaochun2
1. Key Lab for Optoelectronic Technology and Systems, Chongqing University, Chongqing 400030, China
2. Transportation Institute, Chongqing Jiaotong University, Chongqing 400074, China
Cite this article: 

ZHAO Huiting, LIAO Changrong, ZHANG Peng, JIAN Xiaochun. Effect of Hard Magnetic Filler and Magnetization on Magneto-control Mechanical Behavior ofMagneto-active Elastomers. Chinese Journal of Materials Research, 2016, 30(6): 457-464.

Download:  HTML  PDF(1248KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Two types of magneto-active elastomers (MAEs) with fillers of NdFeB powder and powder mixture of carbonyl iron and NdFeB are prepared respectively, and then they were all magnetized by different magnetization intensities. The microstructure of MAEs is characterized by KEYENCE VHX-600 digital microscope. The magnetization characteristic curves and the mechanical properties of MAEs weremeasured by VSM and MCR-301 rheometer respectively. The influence of the fraction and magnetic remanence intensity of the hard magnetic fillers on the magneto-control mechanical behavior of the MAEs was carefully examined.The results demonstrated that the mechanical properties of MAEs filled with NdFeB powder were affected strongly by the intensity of magnetic field adoped for magnetization treatments. An appropriate amount of the hard magnetic fillers and the magnetization by higher magnetic field intensity are beneficial to the improvement of the shear storage modulus of the MAEs.

Key words:  organic polymer materials      magneto-active elastomer      magneto-control mechanical property      hard magnetic filler      shear storage modulus     
Received:  25 September 2015     
ZTFLH:  TB324  
Fund: *Supported by National Natural Science Foundation of China No.51575065 and the Fundamental Research Funds for the Central Universities No.106112015CDJZR125517
About author:  **To whom correspondence should be address, Tel: (023)65111017, E-mail: crliao@cqu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.551     OR     https://www.cjmr.org/EN/Y2016/V30/I6/457

Fig.1  Preparation process of MAE
Samples Carbonyl iron powder NdFeB powder A component of RTV-2 Simethicone Magnetizing voltage
No. /%,mass fraction /%, mass fraction /%, mass fraction /%, mass fraction /V
1 0 70 15 15 -
2 0 70 15 15 0
3 0 70 15 15 700
4 0 70 15 15 1200
5 60 20 10 10 0
6 60 20 10 10 700
7 60 20 10 10 1000
8 60 20 10 10 1200
Table 1  Preparation parameters of MAEs
Fig.2  Internal microstructures of MAEs with hard magnetic filler: (a) anisotropy and (b) isotropy
Fig.3  Magnetization curve for MAE with hard magnetic filler
Fig.4  Hysteresis loops for NdFeB powders
Fig.5  Magnetic field dependence of shear storage modulus for MAE with hard magnetic filler
Fig.6  Internal microstructures of mixed MAEs: (a) non-magnetize and (b) magnetized
Fig.7  Magnetization curve for the mixed MAE
Fig.8  Magnetic field dependence of storage modulus for 60%+20% mixed MAE of different magnetizing voltages
Samples
No.
Initial shear
storage modulus
(G0)/MPa
Magneto-induced
shear modulus
(ΔG)/MPa
MR effect
(β)/%
5 0.18 1.47 817
6 0.27 1.50 556
7 0.31 1.52 490
8 0.35 1.55 443
Table 2  Initial shear storage modulus, magneto-induced shear modulus and MR effect for 60%+20% mixed MAEs
Fig.9  Magnetic field dependence of storage modulus for Mixed MAE of different proportions
Fig.10  Influence of remanence on magnetic field dependence of storage modulus for 70% + 10%, 40% + 40% mixed MAEs
1 G. Filipcsei, I. Csetneki, A. Szilagyi and M. Zrinyi, Magnetic field-responsive smart polymer composites, Adv. Polym. Sci., 206, 137(2007)
2 P. Saxena, M. Hossain, P. Steinmann, Nonlinear magneto-viscoelasticity of transversally isotropic magneto-active polymers, Proc. R. Soc., 470, 20140082(2014)
3 A. V. Chertovich, G. V. Stepanov, E. Y.Kramarenko and A. R. Khokhlov, New composite elastomers with giant magnetic response, Macromol. Mater. Eng., 295, 336(2010)
4 A. Stoll, M. Mayer, G. J.Monkman and M. Shamonin, Evaluation of highly compliant magneto-active elastomers with colossal magnetorheological response, J. Appl. Polym. Sci., 131, 39793(2014)
5 J. T. Zhu, Z. D.Xu and Y. Q. Guo, Magnetoviscoelasticity parametric model of an MR elastomer vibration mitigation device, Smart Mater. Struct., 21(7), 075034(2012)
doi: 10.1088/0964-1726/21/7/075034
6 LIAO Guojiang, Mechanical Property of Magnetorheological Elastomer and its Application in Vibration Control, PhD thesis (Anhui, University of Science and Technology of China, 2014))
(廖国江, 磁流变弹性体的力学性能及其在振动控制中的应用, 博士学位论文(安徽, 中国科技大学, 2014))
7 G. J. Liao, X. L. Gong, S. H. Xuan, C. J.Kang and L. H. Zong, Development of a real-time tunable stiffness and damping vibration isolator based on magnetorheological elastomer, Intell. Mater. Syst. Struct., 23, 25(2011)
doi: 10.1177/1045389X11429853
8 E. Galipeau, P. P. Castaneda, The effect of particle shape and distribution on the macroscopic behavior of magnetoelastic composites, Int. J. Solids Struct., 49, 1(2012)
doi: 10.1016/j.ijsolstr.2011.08.014
9 P. Andriushchenko, K. Nefedev,G. Stepanov, Calculations of magnetoactive elastomer reactions in a uniform external magnetic field, Eur. Phys. J. B, 87, 11(2014)
10 G. Stepanov, D. Borin, S. Odenbach, Magnetorheological effect of magneto-active elastomers containing large particles, J. Phys. Conf. Ser., 149(1), 012098(2009)
doi: 10.1088/1742-6596/149/1/012098
11 P. Zajac, J. Kaleta, D. Lewandowski and A. Gasperowicz, Isotropic magnetorheological elastomers with thermoplastic matrices: structure, damping properties and testing, Smart Mater. Struct., 19, 045014(2010)
12 O. V. Stolbov, Y. L. Raikher, G. V. Stepanov, A. V. Chertovich, E. Y.Kramarenko and A. R. Khokhlov, Low-frequency rheology of magnetically controlled elastomers with isotropic structure, Polym. Sci. Ser. A, 52, 1344(2010)
13 I. Bica, Magnetorheological elastomer-based quadrupolar element of electric circuits, Mater. Sci. Eng. B, 166, 94(2010)
doi: 10.1016/j.mseb.2009.10.020
14 A. S. Semisalova, N. S. Perov, G. V. Stepanov, E. Y.Kramarenko and A. R. Khokhlov, Strong magneto dielectric effect in magneto-rheological elastomers, Soft Matter, 9, 11318(2013)
15 G. V. Stepanov, A. V. Chertovich, E. Y. Kramarenko, Magnetorheological and deformation properties of magnetically controlled elastomers with hard magnetic filler, J. Magn. Magn. Mater., 324, 3448(2012)
doi: 10.1016/j.jmmm.2012.02.062
16 G. V. Stepanov, D. Y. Borinb, E. Y. Kramarenko, V. V. Bogdanov, D. A.Semerenko and P. A. Storozhenko, Magnetoactive elastomer based on magnetically hard filler: synthesis and study of viscoelastic and damping properties, Polym. Sci. Ser. A, 56(5), 603(2014)
doi: 10.1134/S0965545X14050149
17 E. Y. Kramarenko, A. V. Chertovich, G. V. Stepanov, A. S. Semisalova, L. A. Makarova, N. S.Perov and A. R. Khokhlov, Magnetic and viscoelastic response of elastomers with hard magnetic filler, Smart Mater. Struct., 24, 035002(2015)
doi: 10.1088/0964-1726/24/3/035002
18 G. V. Stepanov, D. Y. Borin, Y. L. Raikher, P. V.Melenev and N. S. Perov, Motion of ferroparticles inside the polymeric matrix in magnetoactive elastomers, J. Phys.: Condens. Matter., 20, 204121(2008)
doi: 10.1088/0953-8984/20/20/204121 pmid: 21694250
19 D. Y. Borin, G. V.Stepanov and S. Odenbach, Tuning the tensile modulus of magneto-rheological elastomers with magnetically hard powder, J. Phys. Conf. Ser., 412, 012040(2013)
doi: 10.1088/1742-6596/412/1/012040
[1] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[5] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[6] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[7] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[8] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
[9] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
[10] TANG Kaiyuan, HUANG Yang, HUANG Xiangzhou, GE Ying, LI Pinting, YUAN Fanshu, ZHANG Weiwei, SUN Dongping. Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis[J]. 材料研究学报, 2021, 35(4): 259-270.
[11] SU Chenwen, ZHANG Tingyue, GUO Liwei, LI Le, YANG Ping, LIU Yanqiu. Preparation of Thiol-ene Hydrogels for Extracellular Matrix Simulation[J]. 材料研究学报, 2021, 35(12): 903-910.
[12] ZHANG Xiangyang, ZHANG Qiyang, ZHENG Tao, TANG Tao, LIU Hao, LIU Guojin, ZHU Hailin, ZHU Haifeng. Fabrication of Composite Material Based on MOFs and its Adsorption Properties for Methylene Blue Dyes[J]. 材料研究学报, 2021, 35(11): 866-872.
[13] WAN Liying, XIAO Yang, ZHANG Lunliang. Preparation and Properties of PU-DA System Based on Thermoreversible Diels-Alder Dynamic Covalent Bond[J]. 材料研究学报, 2021, 35(10): 752-760.
[14] ZHANG Cuige, HU Liang, LU Zuxin, ZHOU Jiahui. Preparation and Emulsification Properties of Self-assembled Colloidal Particles Based on Alginic Acid[J]. 材料研究学报, 2021, 35(10): 761-768.
[15] HUANG Jian, LIN Chunxiang, CHEN Ruiying, XIONG Wanyong, WEN Xiaole, LUO Xin. Ionic Liquid-assisted Synthesis of Nanocellulose Adsorbent and Its Adsorption Properties[J]. 材料研究学报, 2020, 34(9): 674-682.
No Suggested Reading articles found!