Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (2): 81-86    DOI: 10.11901/1005.3093.2015.230
Orginal Article Current Issue | Archive | Adv Search |
High Temperature Oxidation Behavior of SIMP Steel and T91 Steel at 800℃
SHI Quanqiang1,2, LIU Jian1,2, YAN Wei2,3, WANG Wei2,3, SHAN Yiyin2,3, YANG Ke2,**()
1. University of Chinese Academy of Sciences, Beijing 100049, China
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
Cite this article: 

SHI Quanqiang, LIU Jian, YAN Wei, WANG Wei, SHAN Yiyin, YANG Ke. High Temperature Oxidation Behavior of SIMP Steel and T91 Steel at 800℃. Chinese Journal of Materials Research, 2016, 30(2): 81-86.

Download:  HTML  PDF(4373KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Oxidation behavior of two ferrite/martensite(F/M) steels, namely a novel 9%-12% Cr modified F/M steel (SIMP steel) and a commercial T91 steel were comparatively studied in air at 800oC. The oxide scales formed on the two steels were characterized by XRD, SEM and EPMA. The results show that the oxide scale formed on SIMP steel is single-layer composed of Cr2O3 and Mn1.5Cr1.5O4 spinel particles, and Si was enriched at the interface between the chromia scale and matrix; while the oxide scale formed on T91 steel has a double layered structure with an outer hematite Fe2O3 layer and an inner Fe-Cr spinel layer. The SIMP steel has better high temperature oxidation resistance than T91 steel, which may be due to the higher content of Cr and Si beneficial to the formation of the compact oxide scale on the SIMP steel.

Key words:  metallic materials      ADS      high temperature oxidation      SIMP steel      T91 steel      oxide scale     
Received:  20 April 2015     
ZTFLH:  TG172  
Fund: *Supported by the Strategic Priority Research Program of Chinese Academy of Sciences Nos. XDA03010301 & XDA03010302.
About author:  **To whom correspondence should be addressed, Tel: (024)23971628, E-mail: kyang@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.230     OR     https://www.cjmr.org/EN/Y2016/V30/I2/81

Steel C Si Cr Mn W Ta V Nb Ni Mo S/×10-6 P/×10-6
T91 0.1 0.26 8.5 0.46 0.20 0.04 0.17 0.92 20 30
SIMP 0.25 1.43 10.8 0.54 1.2 0.11 0.19 0.01 10 40
Table 1  Chemical composition of the studied steels (%, mass fraction)
Fig.1  Microstructures of T91 (a) and SIMP (b) steels after heat treatment
Fig.2  Mass gain curves of SIMP and T91 steels oxidized in air at 800℃ for up to 500 h
Fig.3  XRD spectra of SIMP and T91steelsoxidized in air at 800℃ for 500 h
Fig.4  SEM images and EDS analysis of the surface oxide on T91 (a) and SIMP (b) steels oxidized in air at 800℃ up to 500 h
Fig.5  Cross section morphologies and EPMA element distribution of oxide layers on T91 (a) and SIMP (b) steels oxidized in air at 800℃ up to 500 h
Fig.6  Cross section morphologies of oxide layers on T91 (a) and SIMP (b) steels oxidizedin air at 800℃ up to 500 h
1 R. Klueh, A. Nelson, Ferritic/martensitic steels for next-generation reactors. J. Nucl. Mater., 371, 37(2007)
2 F. Masuyama, History of power plants and progress in heat resistant steels, ISIJ International, 41, 612(2001)
3 F. Barbier, G. Benamati, C. Fazio, A. Rusanov, Compatibility tests of steels in flowing liquid lead-bismuth, J. Nucl. Mater., 295, 149(2001)
4 C. Fazio, G. Benamati, C. Martini, G. Palombarini, Compatibility tests on steels in molten lead and lead-bismuth, J. Nucl. Mater., 296, 243(2001)
5 V. Knežević, J. Balun, G. Sauthoff, G. Inden, A. Schneider, Design of martensitic/ferritic heat-resistant steels for application at 650℃with supporting thermodynamic modelling, Materials Science and Engineering: A, 477, 334(2008)
6 Q. Shi, J. Liu, W. Wang, W. Yan, Y. Shan, K. Yang, High Temperature Oxidation Behavior of SIMP Steel, Oxidation of Metals., 83, 1(2015)
7 O. I. Eliseeva, V. P. Tsisar, Effect of temperature on the interaction of EP823 steel with lead melts saturated with oxygen, Materials Science, 43, 230(2007)
8 A. Huntz, V. Bague, G. Beauplé, C. Haut, C. Sévérac, P. Lecour, X. Longaygue, F. Ropital, Effect of silicon on the oxidation resistance of 9% Cr steels, Applied Surface Science, 207, 255(2003)
9 T. Ishitsuka, Y. Inoue, H. Ogawa, Effect of silicon on the steam oxidation resistance of a 9% Cr heat resistant steel, Oxidation of Metals, 61, 125(2004)
10 H. Evans, D. Hilton, R. Holm, S. Webster, Influence of silicon additions on the oxidation resistance of a stainless steel, Oxidation of Metals, 19, 1(1983)
11 L. Huang, X. Hu, C. Yang, W. Yan, F. Xiao, Y. Shan, K. Yang, Influence of thermal aging on microstructure and mechanical properties of CLAM steel, J. Nucl. Mater, 443, 479(2013)
12 Q. Shi, J. Liu, H. Luan, Z. Yang, W. Wang, W. Yan, Y. Shan, K. Yang, Oxidation behavior of ferritic/martensitic steels in stagnant liquid LBE saturated by oxygen at 600℃, J. Nucl. Mater., 457, 135(2015)
13 Kaur I, W Gust, Fundamentals of Grain and Interphase Boundary Diffusion (Stuttgart, Ziegler Press, 1988)
14 B. A. Pint, I. G. Wright, The oxidation behavior of Fe-Al alloys, Materials Science Forum, 461-464, 799(2004)
15 R. M. Deacon, J. DuPont, C. Kiely, A. Marder, P. Tortorelli, Evaluation of the corrosion resistance of Fe-Al-Cr alloys in simulated low NOx environments, Oxidation of Metals, 72, 87(2009)
16 E. Airiskallio, E. Nurmi, M. H. Heinonen, I. J. Vayrynen, K. Kokko, M. Ropo, M. P. J.Punkkinen, H. Pitkanen, M. Alatalo, J. Kollar, B. Johansson, L. Vitos, High temperature oxidation of Fe-Al and Fe-Cr-Al alloys: The role of Cr as a chemically active element. Corrosion Science, 52, 3394(2010)
17 S. Liu, D. Tang, H. Wu, L. Wang, Oxide scales characterization of micro-alloyed steel at high temperature, Journal of Materials Processing Technology, 213, 1068(2013)
18 A. Paúl, S. Elmrabet, L. Alves, M. Da Silva, J. Soares, J. Odriozola, Ion microprobe study of the scale formed during high temperature oxidation of high silicon EN-1.4301 stainless steel, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 181, 394(2001)
19 R. Pettersson, L. Liu, J. Sund, Cyclic oxidation performance of silicon-alloyed stainless steels in dry and moist air, Corrosion Engineering, Science and Technology, 40, 211(2005)
20 F. Riffard, H. Buscail, E. Caudron, R. Cueff, C. Issartel, S. Perrier, In-situ characterization of the oxide scale formed on yttrium-coated 304 stainless steel at 1000℃, Materials characterization, 49, 55(2002)
21 F. I. W. F. H. Stott, Comparison of the effects of small additions of silicon or aluminum on the oxidation of iron-chromium alloys, Oxidation of Metals, 31, 369(1989)
22 B. Li, B. Gleeson, Effects of silicon on the oxidation behavior of Ni-base chromia-forming alloys, Oxidation of Metals, 65, 101(2006)
23 V. B. Trindade, U. Krupp, B. Z. Hanjari, S. Yang, H.-J. Christ, Effect of alloy grain size on the high-temperature oxidation behavior of the austenitic steel TP 347, Materials Research, 8, 371(2005)
24 A. M. Huntz, V. Bague, G. Beauple, C. Haut, C. Severac, P. Lecour, X. Longaygue, F. Ropital, Effect of silicon on the oxidation resistance of 9% Cr steels, Applied Surface Science, 207, 255(2003)
25 R. K. Wild, High temperature oxidation of austenitic stainless steel in low oxygen pressure. Corrosion Science, 17, 87(1977)
26 M. K. Hossain, Effects of alloy microstructure on the high temperature oxidation of an Fe-10-percent Cr alloy, Corrosion Science, 19, 1031(1979)
27 G. R. Holcomb, D. E. Alman, The effect of manganese additions on the reactive evaporation of chromium in Ni-Cr alloys, Scripta Materialia, 54, 1821(2006)
28 K. Hauffe,Oxidation of Metals ( New York, Plenum Press, 1965)
29 L. Meishuan,High Temperature Corrosion of Metal ( Beijing, Metallurgical Industry Press, 2001) p.248.
(李美栓, 金属的高温腐蚀(北京, 冶金工业出版社, 2001) p.248)
30 N. Birks, G. H. Meier, F. S. Pettit, Introduction to the High Temperature Oxidation of Metals (Cambridge University Press, 2006)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!