Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (12): 948-954    DOI: 10.11901/1005.3093.2015.12.948
Orginal Article Current Issue | Archive | Adv Search |
Effect of Thermo-mechanical Control Processing on Microstructure and Properties of High Toughness X90 Pipeline Steel
Tao NIU1,*(),Yongwen JIANG1,Fei LI1,Guosen ZHU1,Xinlang WU2,Junkuan WU2
1. Shougang Research Institute of Technology, Beijing 100043, China
2. Shougang Qian'an Iron & Steel Co.Ltd, Qian'an 064404, China
Cite this article: 

Tao NIU,Yongwen JIANG,Fei LI,Guosen ZHU,Xinlang WU,Junkuan WU. Effect of Thermo-mechanical Control Processing on Microstructure and Properties of High Toughness X90 Pipeline Steel. Chinese Journal of Materials Research, 2015, 29(12): 948-954.

Download:  HTML  PDF(6434KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Effect of the main TMCP parameters on mechanical properties and microstructure characteristics of X90 pipeline steel was investigated by a labroratory simulated TMPC with desired processing parameters, including reheating temperature, intermediate slab thickness and coiling temperature. Results show that the strength increases with the increment of reheating temperature at first, but dramatically reduces when the grain size gets coarse at reheating temperature of 1250℃. Thicker intermediate slab contributes to higher strength and toughness because of a homogenized microstructure with refined grains was brought out. Coiling temperature plays the most important role in controlling the steel property. A microstructure composed of proper combination of granular banite and lath banite of the steel with optimal matching of strength and toughness can be achieved when coiling at 320℃. An industrial production of X90 coil were carried out employing the parameters obtained through the investigation, high strength combined with great low temperature toughness has been achieved, which proves that TMCP technology in this study has a good practice effect.

Key words:  metallic materials      pipeline steel      X90      TMCP      microstructure      property     
Received:  20 January 2015     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.12.948     OR     https://www.cjmr.org/EN/Y2015/V29/I12/948

No. Reheating temperature
/℃
Reheating time
/min
Intermediate slab thickness
/mm
Finishing rolling temperature
/℃
Coiling temperature
/℃
1# 1210 180 36 810 460
2# 1210 180 36 810 320
3# 1210 180 36 810 100
4# 1180 180 36 810 320
5# 1250 180 36 810 320
6# 1210 180 32 810 320
Table 1  Experimental technology parameters
Fig.1  Effect of reheating temperature on mechanical properties (a) strength, (b) Y/T ratio, (c) Akv2, (d) elongation
Fig.2  Effect of reheating temperature on microstructure (a) 1250℃, (b) 1210℃, (c) 1180℃
Fig.3  Effct of intermediate billet thickness on microstructure (a) 36 mm, (b) 32 mm
Fig.4  Effect of coiling temperature on mechanical properties (a) strength, (b) Y/T ratio, (c) Akv2, (d) elongation
No. Intermediate slab thickness
/mm
Rp0.2
/MPa
Rm
/MPa
Auel
/%
A50.8
/%
Rp0.2/Rm Akv2/J
-20℃ -40℃ -60℃
5# 36 845 1003 3.3 24.8 0.84 265 261 171
6# 32 822 1005 3.3 24.2 0.82 193 204 166
Table 2  Comparasion of Properties obtained with different intermidiate slab thickness
Fig.5  Effect of coiling temperature on microstructure (a) 460℃, (b) 320℃, (c) 100℃
Fig.6  Granular banite microstructure and M/A island (a) Granular banite, (b) M/A island
Fig.7  Lath banite microstructure, dislocations and residual austenite (a) Lath banite, (b) residual austenite, (c) diffraction spot
Coil No. Rp0.2
MPa
Rm
MPa
A50.8
%
Y/T Akv2(-20℃)
J
HV10 DWTT(-15℃)
%
1310169121030 635 740 21 0.86 374 262 100
1310169121030 630 775 15 0.82 373 261 100
1310169221010 640 790 17 0.81 387 262 100
Standard 625~775 695~915 ≥14.2 ≤0.95 ≥295 ≤285 ≥85
Table 3  Mechanical properties of indurstrial produced X90 pipeline steel
Fig.8  Impacting toughness at serial test temperatures
Fig.9  DWTT toughness at serial test temperatures
1 LI Helin, JI Lingkang, TIAN Wei, High grade linepipe and high pressure transportation: significant progress of oil & gas transportation pipeline technology in China, Engineering Science, 12(5), 84(2010)
1 (李鹤林, 吉玲康, 田伟, 高钢级钢管和高压输送: 我国油气输送管道的重大技术进步, 中国工程科学, 12(5), 84(2010))
2 Hitoshi Asahi, Overview of Development and Commercialization of X120 Ultra-High Strength UOE Linepipe. Proceedings of International Symposiumon Microalloyed Steels for Oil & Gas Industry, Araxa-MG, Brazil, 2006: 24-26
3 Joe Zhou, Da-Ming Duan, David Taylor.Some considerations for successful applications of high grade line pipes, Ineternational Seminar on Application of high strength Linepipe 2010, Xi’an China, 2010: 28-29
4 Demofonti G, Mannucci G, Hillenbrand H-G, Evaluation of the suitability of X100 pipes for high pressure gas transmission pipelines by full scale tests, Proceedings of International Pipeline Conference2004, Canada Calgary Alberta: IPC, 2004: 2004-No.0415
5 WANG Xiaoxiang, Development Progress of Pipeline Steel with Extra-high Strength, Welded pipe and tube, 33(2), 5(2010)
5 (王晓香, 超高强管线钢管研发新进展, 焊管, 33(2), 5(2010))
6 QIAN Yajun, XIAO Wenyong, LIU Li, YUAN Renping, XIONG Xiangjiang, Development and Trial Production of X90M Pipeline Steel with Large Diameter, Welded pipe and tube, 37(1), 22(2014)
6 (钱亚军, 肖文勇, 刘理, 袁仁平, 熊祥江, 大直径X90M管线钢的开发与试制, 焊管, 37(1), 22(2014))
7 XIA Dianxiu, WANG Xuelin, LI Xiucheng, YOU Yang, SHANG Chengjia, Propreties and microstructure of third generation X90 pipeline steel, 46(3), 271(2013)
7 (夏佃秀, 王学林, 李秀程, 由洋, 尚成嘉, X90级别第三代管线钢的力学性能与组织特征, 金属学报, 46(3), 271(2013))
8 QI Liang, ZHAO Zhegnzhi, ZHAO Aimin, HUANG Yao, Effect of niobium on second phase precipitation and austenite grain growth behavior in high-grade pipeline steel, Journal of University of Science and Technology Beijing, 35(3), 304(2013)
8 (齐亮, 赵征志, 赵爱民, 黄耀, 铌对高钢级管线钢中第二相析出与奥氏体晶粒长大行为的影响, 北京科技大学学报, 35(3), 304(2013))
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[8] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[9] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[10] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[11] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[12] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
No Suggested Reading articles found!