Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (6): 401-408    DOI: 10.11901/1005.3093.2017.466
ARTICLES Current Issue | Archive | Adv Search |
Effect of Low Temperature on Mechanical Properties of ER8 Steel for Wheel Rim
Shaojie WANG1, Jing HAN1(), Wei ZENG1, Xuemei ZHANG2, Junwen ZHAO1, Guangze DAI1
1 School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
2 CRRC Chang Chun Railway Vehicles Co. Ltd., Changchun 130062, China
Cite this article: 

Shaojie WANG, Jing HAN, Wei ZENG, Xuemei ZHANG, Junwen ZHAO, Guangze DAI. Effect of Low Temperature on Mechanical Properties of ER8 Steel for Wheel Rim. Chinese Journal of Materials Research, 2018, 32(6): 401-408.

Download:  HTML  PDF(10228KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The mechanical properties of ER8 steel for wheel rim were studied at -40℃, -20℃, 0℃ and 25℃ (room temperature) respectively, while the microstructure and fractured surface of the steel were characterized by means of laser confocal microscopy, field emission scanning electron microscopy (SEM). Results show that the tensile- and yield-strength increase linearly with the decreasing temperature, i.e. the increments of which reach 5.8% and 7.1% respectively at -40℃, in comparison to those at room temperature, correspondingly the plasticity index (elongation and cross section shrinkage) decreases by about 2%; The impact toughness of the steel for wheel rim is very sensitive to temperature, the impact toughness of the steel reduces rapidly with the decreasing temperature, and the impact energy reduces by 60% at -40℃ in comparison to that at ambient temperature; The fatigue life of the steel at -40 is higher than that at room temperature. At -40℃, the size of secondary cracks in the fatigue source and crack propagation zone is smaller than those at room temperature, the fatigue crack critical size ac is about 3.2 mm at room temperature, while it is about 4 mm at -40℃。

Key words:  metallic materials      ER8 wheel steel      mechanical properties      impact toughness      fatigue life     
Received:  31 July 2017     
ZTFLH:  TG142.1  
Fund: Supported by National Key Research and Development Plan (No. 2016YFB1200505-006) and China Railway Corporation's Technology Research and Development Plan (No. 2016J007-H)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.466     OR     https://www.cjmr.org/EN/Y2018/V32/I6/401

C Si Mn P S Mo Cu Ti Fe
0.528 0.346 0.733 0.004 0.001 0.021 0.148 0.004 Bal.
Table 1  Chemical compositions of ER8 high speed wheel rim (%, mass fraction)
Fig.1  Position of specimens sampled from high speed wheel rim
Fig.2  Microstructure of high speed wheel rim
Fig.3  Test results of different test temperatures (a) tensile strength and yield strength; (b) elongation and reduction of area
Fig.4  Tensile fracture SEM morphology of different test temperatures: (a, b) 25℃; (c, d) 0℃; (e, f) -20℃; (g, h) -40℃
Fig.5  Impact test performance of different test temperatures
Fig.6  Impact fracture morphology of high speed wheel rim: (a) macro overview at 25℃; (b) 25℃ notch front zone; (c) 25℃ propagation zone; (d) -40℃ propagation zone
Fig.7  Up-and-down diagram: (a) 25℃; (b) -40℃
Stress/MPa i fi ifi i 2fi
590 2 1 2 4
580 1 2 2 2
570 0 1 0 0
3 4 4 6
Table 2  Statistical analysis of fatigue data at room temperature
Fig.8  Test results of fatigue finite life zone: (a) 25℃; (b) -40℃
Fig.9  Fatigue S-N curve: (a) 25℃; (b) -40℃
Fig.10  Fatigue fracture morphology at 25℃; (a) macro overview (b) A-fatigue propagation zone (c) B-fatigue source zone
Fig.11  Fatigue fracture morphology at -40℃; (a) macro overview (b) A-fatigue propagation zone (c) B-fatigue source zone
Fig.12  Critical crack length and fatigue fracture partition[16]
[1] Yin Y J, Xiao F, Ren X C.Influence of surface shot peening treatments on corrosion behavior of wheel steel[J]. Corrosion and Protection, 2015, (1): 31殷艳君, 肖峰, 任学冲. 表面喷丸处理对车轮辐板腐蚀行为的影响[J]. 腐蚀与防护, 2015 , 36(1): 31
[2] Ding H H, Wang W J, Guo J, et al.Effect of axle-load on rolling wear and damage behaviors of wheel and rail materials[J]. Journal of Materials Engineering, 2015, (10): 35丁昊昊, 王文健, 郭俊等. 轴重对轮轨材料滚动磨损与损伤行为影响[J]. 材料工程, 2015, (10): 35
[3] Qin Y D.Study on impact fatigue life of high speed EMU under low temperature service condition [D]. Zhejiang Sci-Tech University, 2017秦玉冬. 低温服役条件下高速动车组车轮冲击疲劳寿命研究 [D]. 浙江理工大学, 2017
[4] Zhu Z Y, DAI G Z, Zhao J W.Mechanisms and new parameter attribute reduction of high-speed railway wheel rim steel subjected to low temperature fatigue[J]. Materials Science & Engineering A, 2016, 673: 476
[5] Li W.Study on the impact toughness of GOST-2 wheel steel at low temperature[J]. Physics Examination and Testing, 2011, (5): 5李伟. GOST-2车轮钢低温冲击韧性研究[J]. 物理测试, 2011, (5): 5
[6] Ren X C, Ma Y X, Gao K W, et al.Effects of temperature on the fracture toughness of high speed wheel steel[J]. China Railway Science, 2013, (5): 93任学冲, 马英霞, 高克玮等. 温度对高速车轮钢断裂韧性的影响[J]. 中国铁道科学, 2013, (5): 93
[7] Hu N, Dai G L, Liu K.Recent development of design and construction of medium and long span high-speed railway bridges in China[J]. Engineering Structures, 2014, 74(1): 233
[8] Zhang X H.The experiment research of fatigue crack growth rate on low-temperature for steel 07MnNiCrMoVDR [A]. China Mechanical Engineering Society Pressure Vessel Branch. Proceedings of the Fifth National Symposium on Pressure Vessels[C]. China Mechanical Engineering Society Pressure Vessel Branch, 2001: 3章小浒. 07MnNiCrMoVDR钢板低温疲劳裂纹扩展速率试验研究 [A]. 中国机械工程学会压力容器分会.第五届全国压力容器学术会议论文集[C]. 中国机械工程学会压力容器分会, 2001: 3
[9] Fang X Y, Zhao Y X, Liu H W.Study on fatigue failure mechanism at various temperatures of a high-speed railway wheel steel[J]. Materials Science & Engineering A, 2017, 696: 299
[10] VolchokV. I P, Fed'kovM. V A, Lutov M V. Nonmetallic inclusions and fracture of steel at low temperatures[J]. Soviet materials science: a transl. of Fiziko-khimicheskaya mekhanika materialov / Academy of Sciences of the Ukrainian SSR, 1978, 13(2): 119
[11] B. Hwanga, T-H. Leea, S-J Kima. Effect of alloying elements on ductile-to-brittle transition behavior of high-interstitial-alloyed 18Cr-10Mn austenitic steels[J]. Procedia Engineering, 2011, 10(1): 409
[12] Hahnenberger F, Smaga M, Eifler D.Microstructural investigation of the fatigue behavior and phase transformation in metastable austenitic steels at ambient and lower temperatures[J]. International Journal of Fatigue, 2014, 69(3): 36
[13] Liu R T, Liu W B, Liu J Y.Mechnical Performance of Engineering Materials [M]. Harbin Institute of Technology Press, 2001刘瑞堂, 刘文博, 刘锦云. 工程材料力学性能 [M]. 哈尔滨工业大学出版社, 2001
[14] Wang Q, Zhao Y X, Wang H.Experiments and characterization on the probabilistic fatigue lives and strengths of D1 railway wheel steel[J]. Journal of Mechanical Engineering, 2014, (14): 50王强, 赵永翔, 王欢. 铁路D1车轮钢的疲劳可靠性寿命与强度的试验及表征[J]. 机械工程学报, 2014, (14): 50
[15] Wang S H, Yang D Z, He S Y, et al.Fatigue behavior of 1Cr18Ni9Ti steel at low temperatures and in vacuum[J]. Materials Science and Technology, 2004, (6): 625王淑花, 杨德庄, 何世禹等. 低温与真空条件下1Cr18Ni9Ti钢的疲劳行为[J]. 材料科学与工艺, 2004, (6): 625
[16] Liu X L, Zhang Z, Tao C H.Fatigue Fractography Quantitative Analysis [M]. National Defense Industry Press, 2010刘新灵, 张峥, 陶春虎. 疲劳断口定量分析 [M]. 国防工业出版社, 2010
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] LIU Tianfu, ZHANG Bin, ZHANG Junfeng, XU Qiang, SONG Zhuman, ZHANG Guangping. Effect of Notch Stress Concentration Factors on Low-cycle Fatigue Performance of TC4 ELI Alloy[J]. 材料研究学报, 2023, 37(7): 511-522.
No Suggested Reading articles found!