Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (9): 641-648    DOI: 10.11901/1005.3093.2014.551
Current Issue | Archive | Adv Search |
Effect of Cr Addition on the Microstructure and Room-temperature Fracture Toughness of Nb-Si Based Ultra-high Temperature Alloys
Song ZHANG,Xiping GUO()
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China
Cite this article: 

Song ZHANG,Xiping GUO. Effect of Cr Addition on the Microstructure and Room-temperature Fracture Toughness of Nb-Si Based Ultra-high Temperature Alloys. Chinese Journal of Materials Research, 2015, 29(9): 641-648.

Download:  HTML  PDF(5952KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Four Nb-Si based ultra-high temperature alloys with compositions of Nb-22Ti-16Si-4Hf-3Al-xCr (x = 0, 3%, 5% and 10%, atomic fraction) were prepared by vacuum non-consumable arc melting and then heat-treated at 1450℃ for 50 h. The effects of Cr content on the microstructure and room-temperature fracture toughness of the alloys were investigated. The results showed that the Cr addition did not change the crystal structure of the silicide γ(Nb, X)5Si3. The amount of γ(Nb, X)5Si3 rose while that of the eutectic Nbss/γ(Nb, X)5Si decreased with the increasing Cr content. Furthermore, a low melting point of three-phase eutectic composed of Nbss, (Nb, X)5Si3 and Cr2(Nb, X) was observed in Cr-containing alloys and its amount gradually increased with the increasing Cr addition. After 1450℃/50 h heat-treatment, the original Nbss dendrites as well as eutectic colonies disappeared, and the microstructural uniformity was significantly ameliorated. The alloys with 0, 3% and 5% Cr were all composed of phases Nbss and γ(Nb, X)5Si3, while three-phase equilibrium of Nbss, γ(Nb, X)5Si3 and Cr2(Nb, X) was observed in the alloy with 10% Cr. However, the room-temperature fracture toughness of the as-cast alloys exhibited a decreasing trend with Cr addition.

Key words:  metallic materials      Nb-Si based ultra-high temperature alloy      arc-melting      heat-treatment      room-temperature fracture toughness      Cr addition     
Received:  30 September 2014     
Fund: *Supported by National Natural Science Foundation of China Nos. 51371145, 51071124, 51431003 and U1435201, and Special Research Fund for Doctoral Disciplines in Colleges and Universities of Ministry of Education, China, No. 20096102110012.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.551     OR     https://www.cjmr.org/EN/Y2015/V29/I9/641

Fig.1  XRD spectra of the as-cast (a) and heat-treated (b) Nb-Si based ultrahigh temperature alloys
Fig.2  BSE images of the as-cast Nb-Si based ultrahigh temperature alloys, (a) 0Cr-AC, (b) 3Cr-AC, (c) 5Cr-AC and (d) 10Cr-AC
Fig.3  BSE images of Nbss/(Nb, X)5Si3/Cr2(Nb, X) eutectic present in the as-cast Nb-Si based ultrahigh temperature alloys, (a) 3Cr-AC, (b) 5Cr-AC and (c) 10Cr-AC
Alloy Phase Nb Ti Si Hf Al Cr
0Cr-AC Nbss γ(Nb, X)5Si3 73.6 43.6 19.1 13.0 1.8 36.3 2.4 4.7 3.1 2.4 - -
3Cr-AC Nbss γ(Nb, X)5Si3 72.2 42.2 18.1 14.8 1.6 35.6 2.2 4.8 3.5 2.3 2.4 0.3
5Cr-AC Nbss γ(Nb, X)5Si3 66.9 41.6 18.7 15.3 1.5 34.7 2.2 5.1 4.2 2.8 4.5 0.5
10Cr-AC Nbss γ(Nb, X)5Si3 65.6 40.4 18.3 14.2 1.2 36.7 2.1 5.6 3.4 2.1 9.4 1.0
Table 1  Compositions of the phases present in the as-cast Nb-Si based ultrahigh temperature alloys (%, atomic fraction)
Fig.4  BSE images of the Nb-Si based ultrahigh temperature alloys heat-treated at 1450℃ for 50 h, (a) 0Cr-HT, (b) 3Cr-HT, (c) 5Cr-HT and (d) 10Cr-HT
Alloy Phase Nb Ti Si Hf Al Cr
0Cr-HT Nbss γ(Nb, X)5Si3 70.2 43.0 23.2 12.3 1.0 37.5 2.0 4.9 3.6 2.3 - -
3Cr-HT Nbss γ(Nb, X)5Si3 63.7 41.3 24.5 14.8 0.8 36.2 1.9 4.9 3.8 2.4 5.3 0.4
5Cr-HT Nbss γ(Nb, X)5Si3 61.7 42.3 23.5 14.6 0.6 35.2 1.5 4.7 4.7 2.6 8.0 0.6
10Cr-HT Nbss γ(Nb, X)5Si3 Cr2(Nb, X) 57.6 40.2 27.5 24.9 13.7 10.0 0.4 37.4 9.5 1.3 5.1 3.3 4.1 2.6 1.7 11.7 1.0 48.0
Table 2  Compositions of the phases present in the Nb-Si based ultrahigh temperature alloys heat-treated at 1450℃ for 50 h (%, atomic fraction)
Alloy 0Cr-AC 3Cr-AC 5Cr-AC 10Cr-AC
Specimen 1 2 3 1 2 3 1 2 3 1 2 3
KQ /MPam1/2 13.3 14.6 12.3 11.6 12.4 11.7 11.3 11.9 12.2 9.9 11.0 10.0
Average KQ /MPam1/2 13.4 11.9 11.8 10.3
Table 3  Room-temperature fracture toughness of the as-cast Nb-Si based ultrahigh temperature alloys
Fig.5  SEM images of the fracture surfaces of the as-cast Nb-Si based ultrahigh temperature alloys, (a) 0Cr-AC, (b) 3Cr-AC, (c) 5Cr-AC and (d) 10Cr-AC
1 B. P. Bewlay, M. R. Jackson, J. C. Zhao, P. R. Subramanian,A review of very-high-temperature Nb-silicide-based composites, Metall. Mater. Trans. A, 34, 2043(2003)
2 J. C. Zhao, J. H. Westbrook,Guest Editors, Ultrahigh-temperature materials for jet engines, MRS Bull., 28(9), 622(2003)
3 M. E. Schlesinger, H. Okamoto, A. B. Gokhale, R. Abbachian,The Nb-Si (Niobium-silicon) system, J. Phase Equilib., 14(4), 502(1993)
4 B. P. Bewlay, M. R. Jackson, H. A. Lipsitt,The balance of mechanical and environmental properties of a multielement niobium-niobium silicide-based in situ composite, Metall. Mater. Trans. A, 27, 3801(1996)
5 K. S. Chan,The fracture toughness of niobium-based in situ composites, Metall. Mater. Trans. A, 27A, 2518(1996)
6 J. Geng, P. Tsakiropoulos, G. S. Shao,Oxidation of Nb-Si-Cr-Al in situ composites with Mo, Ti and Hf additions, Mater. Sci. Eng. A, 441, 26(2006)
7 K. Zelenitsas, P. Tsakiropoulos,Effect of Al, Cr and Ta additions on the oxidation behavior of Nb-Ti-Si in situ composites at 800 ℃, Mater. Sci. Eng. A, 416, 269(2006)
8 J. Geng, P. Tsakiropoulos, G. Shao,A thermo-gravimetric and microstrctural study of the oxidation of Nbss/Nb5Si3-based in situ composites with Sn addition, Intermetallics, 15, 270(2007)
9 K. S. Chan,Alloying effects on fracture mechanisms in Nb-based intermetallic in-situ composites, Mater. Sci. Eng. A, 329, 513(2002)
10 T. Thandorn, P. Tsakiropoulos,Study of the role of B addition on the microstructure of the Nb-24Ti-18Si-8B alloy, Intermetallics, 18, 1033(2010)
11 C. L. Ma, J. G. Li, Y. Tan,Effect of B addition on the microstructures and mechanical properties of Nb-16Si-10Mo-15W alloy, Mater. Sci. Eng. A, 384, 377(2004)
12 C. L. Ma, J. G. Li, Y. Tan, R. Tanaka, S. Hanada,Microstructure and mechanical properties of Nb/Nb5Si3 in situ composites in Nb-Mo-Si and Nb-W-Si systems, Mater. Sci. Eng. A, 386, 375(2004)
13 J. Geng, P. Tsakiropoulos, G. Shao,A study of the effects of Hf and Sn additions on the microstructure of Nbss/Nb5Si3 based in situ composites, Intermetallics, 15, 69(2007)
14 I. Grammenos, P. Tsakiropoulos,Study of the role of Al, Cr and Ti additions in the microstructure of Nb-18Si-5Hf base alloys, Intermetallics, 18, 242(2010)
15 W. Y. Kim, I. D. Yeo, T. Y. Ra, G. S. Cho, M. S. Kim,Effects of V addition on microstructure and mechanical property in the Nb-Si alloy system, J. Alloys Compd., 364, 186(2004)
16 K. Zelenitsas, P. Tsakiropoulos,Study of the role of Al and Cr additions in the microstructure of Nb-Ti-Si in situ composites, Intermetallics, 13, 1079(2005)
17 CHEN Liqun,GUO Xiping, Effects of Cr content on microstructure and oxidation resistance of Nb-Ti-Si-Cr based ultrahigh-temperature alloy, Transactions of Materials and Heat Treatment, 34(5), 30(2013)
17 (陈丽群, 郭喜平, Cr含量对Nb-Ti-Si-Cr基超高温合金组织及抗氧化性能的影响, 材料热处理学报, 34(5), 30(2013))
18 H. S. Guo, X. P. Guo,Microstructure evolution and room temperature fracture toughness of an integrally directionally solidified Nb-Ti-Si based ultrahigh temperature alloy, Scripta Mater., 64, 637(2011)
19 J. Sha, C. Yang, J. Liu,Toughening and strengthening behavior of an Nb-8Si-20Ti-6Hf alloy with addition of Cr, Scripta Mater., 62, 859(2010)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!