Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (8): 602-606    DOI: 10.11901/1005.3093.2014.385
Current Issue | Archive | Adv Search |
High Temperature Mechanical Properties of P-Containing High Strength IF Steel
Yongqi YAN,Heng CUI(),Zheng WANG,Aimin ZHAO
Engineering Research Institute, University of Science and Technology Beijing, Beijing100083, China
Cite this article: 

Yongqi YAN,Heng CUI,Zheng WANG,Aimin ZHAO. High Temperature Mechanical Properties of P-Containing High Strength IF Steel. Chinese Journal of Materials Research, 2015, 29(8): 602-606.

Download:  HTML  PDF(2268KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The high temperature mechanical properties of P-contained high strength interstitial free (IF) steel were investigated using Gleeble3500 thermal simulation testing machine, in terms of zero ductility temperature (ZDT), zero strength temperature (ZST) and the relationship of tensile strength with temperature. The fractured surfaces at different tensile temperatures were characterized by means of scanning electron microscope. The phase transition temperature interval was deduced by the THERMO-CALC software. The results show that the ZDT and ZST of the steel are 1420℃ and 1445℃, respectively. The brittleness temperature interval Ⅰ is from 1400℃ to the melting point, and there is no the brittleness temperature interval Ⅲ. The transverse cracks on the surface of casting blank did not occur during the straightening process. The tensile strengths decrease with the increasing temperature in the test temperature range, and which are lower than 5.3 MPa above 1300℃. The result of THERMO-CALC calculation shows that, with the specimens cooling from 500℃ to 400℃, Fe3P precipitates out in the α-Fe matrix, which may results in cold short. The transverse cracks on the continuous casing (CC) slab could dramatically be reduced by Hot-charging Technology.

Key words:  metallic materials      high temperature mechanical properties      high-temperature tension test      P-contained high strength IF steel      THERMO-CALC      phase transition     
Received:  28 December 2014     
Fund: *Supported by Beijing Higher Education Young Elite Teacher Project No. YETP0411 and Fundamental Research Funds for the Central Universities No. FRF-TP-14-102A2.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.385     OR     https://www.cjmr.org/EN/Y2015/V29/I8/602

C Si Mn P S Alt N Nb Ti
0.002 0.726 0.549 0.089 0.01 0.036 0.002 0.033 0.023
Table 1  Composition analysis of experimental steels (mass fraction, %)
Fig.1  Sketch map of temperature control during tensile tests
Fig.2  Relationship between tensile strength and temperature
Fig.3  Variation of area reduction with temperature
Fig.4  Morphology of fracture at 650℃ (a), 800℃ (b), 900℃ (c), 950℃ (d), 1000℃ (e), 1050℃ (f) and microscopic morphology of fracture at 650℃ (g), 950℃ (h)
Fig.5  Equilibrium phase diagram of high strength IF steel (1-γ-Fe (Austenite); 2-TiN; 3-α-Fe (Ferrite); 4-Liquid; 5-NbN; 6-Pyrrhotite; 7-Fe3P; 8- NbC; 9- LAVES Phase)
1 MA Mingtu, Advanced Automobile Steel, (Beijing, Chemical Industry Press, 2007) p. 35
1 ( 35)
2 LI Shouhua,LI Jun, Progress in research of high strength IF steel for automotive applications, Shang Hai Metals, 29(5), 66(2007)
2 (李守华, 李 俊, 汽车用高强度IF钢的研究进展, 上海金属, 29(5), 66(2007))
3 WU Qingsong,OUYANG Yexian, ZHAO Jiangtao, DUAN Xiaoping, LONG an, Impact tensile behavior of high strength IF steel sheet, Research of Iron and Steel, 40(2), 33(2012)
3 (吴青松, 欧阳页先, 赵江涛, 段小平, 龙 安, 高强IF钢的高速应变行为, 钢铁研究, 40(2), 33(2012))
4 WANG Chang,YU Yang, WANG Lin, CHEN Jin, XU Haiwei, Research on the factors inducing strip fracture of high strength IF steel containing phosphorus during straightening process, Iron and Steel, 49(5), 81(2014)
4 (王 畅, 于 洋, 王 林, 陈 瑾, 徐海卫, 含磷高强IF钢拉矫断带的原因及机制, 钢铁, 49(5), 81(2014))
5 T. Nakagawa, T. Umeda, J. Murata, Y.a Kamimura, N. Niwa,Deformation behavior during solidification of steels, ISIJ Int., 35(6), 723(1995)
6 C. H. Yu, M. Suzuki, H. Shibata, T. Emi,Simulation of crack formation on solidifying steel shell in continuous casting mold, ISIJ Int., 36(Suppl.), s159(1996)
7 H. G. Suzuki, S. Nishimura, J. Imamura, Y. Nakamura,Hot ductility in steels in the temperature range between 900 and 600℃, Tetsu-to-Hagane, 67(8), 1180(1981)
8 DI Hongshuang,KANG Xiangdong, WANG Guodong, LIU Xxianghua, High temperature mechanical properties of low carbon steel, Journal of Northeastern University (Natural Science), 25(1), 40(2004)
8 (邸洪双, 康向东, 王国栋, 刘相华, 低碳钢的高温力学性能, 东北大学学报(自然科学版), 25(1), 40(2004))
9 B. Mintz,The influence of composition on the hot ductility of steels and the problem of transverse cracking, ISIJ Int., 39(9), 833(1999)
10 WANG Xinhua,ZHU Guoseng, YU Huixiang, WANG Wanjun, High temperature properties of continuous casting high carbon steels, Journal of University of Science and Technology Beijing, 27(5), 545(2005)
10 (王新华, 朱国森, 于会香, 王万军, 高碳钢连铸板坯高温力学性能, 北京科技大学学报, 27(5), 545(2005))
11 YONG Qilong, Second Phases in Steel Material, (Beijing, Metallurgical Industry Press, 2006) p.145
12 ZHANG Dongbin,WU Chengjian, YANG Rang, Grain boundary segregation of P in Fe-P and Fe-P-Ce alloys and effect on their brittleness, Acta Metallurgica Sinica, 27(2), 111(1991)
12 (张东彬, 吴承建, 杨让, Fe-P与Fe-P-Ce合金中的晶界磷偏聚及其对脆性的影响, 金属学报, 27(2), 111(1991))
13 YIN Guili,ZHOU Lidai, LIN Cheng, Effect of the valence electron structures of phosphide on cold short in steel, Ordnance material science and engineering, 32(3), 11(2009)
13 (尹桂丽, 周立岱, 林 成, 钢中磷化物的相价电子结构及其对冷脆的影响, 兵器材料科学与工程, 32(3), 11(2009))
14 ZHAO Rigetu,WANG Zhongwei, LI Haigang, Analysis of phosphide Fe3P in 82MnA steel billet , Physical Testing and Chemical Analysis Part A(Physical Testing), 47(6), 340(2011)
14 (照日格图, 王忠伟, 李海刚, 82MnA钢连铸坯中的磷化物Fe3P分析, 理化检验-物理分册, 47(6), 340(2011))
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] YANG Dongtian, XIONG Liangyin, LIAO Hongbin, LIU Shi. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. 材料研究学报, 2023, 37(8): 590-602.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!