Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (8): 607-612    DOI: 10.11901/1005.3093.2014.561
Current Issue | Archive | Adv Search |
Influence of Coupling Agent Si69 on Properties of Nanocomposites of Nature Rubber with Different Sized Nano-Silica
Pengyu ZHANG,Na WANG,Feng YANG,Hailan KANG,Qinghong FANG()
School of Material Science and Engineering, Shenyang University of Chemical Technology,Shenyang 110142, China
Cite this article: 

Pengyu ZHANG,Na WANG,Feng YANG,Hailan KANG,Qinghong FANG. Influence of Coupling Agent Si69 on Properties of Nanocomposites of Nature Rubber with Different Sized Nano-Silica. Chinese Journal of Materials Research, 2015, 29(8): 607-612.

Download:  HTML  PDF(3441KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of coupling agent silane Si69 on properties of nanocomposites of nature rubber with different sized nano-silica (15, 30 and 80 nm)was investigated in terms of curing performance, mechanical properties, Mullins effect, Payne-effect, loss factor, the dynamic heat build-up and dynamic mechanical property etc. while taking the same composites without coupling agent as comparison. Results show that with the addition of the coupling agent Si69, the dispersity of nano-silica in the rubber and the binding of nano-silica with the rubber matrix were improved; the mechanical properties of nano-silica/nature rubber composite were effectively enhanced and the positive sulfuration time t90 was shortened. It is noted that the smaller size of the nano-silica is, the better positive effect on the performance and mechanical properties of the composite can be obtained. Due to the addition of the coupling agent Si69, the Payne-effect, loss factor and the dynamic heat build-up can be reduced for the composites with nano-silica of 15 nm and 30 nm, respectively, but is not obvious for the ones with 80 nm silica.

Key words:  composites      nano-silica      silane coupling agent      static mechanical properties      dynamic mechanical properties      Payne-effect     
Received:  08 October 2014     
Fund: *Supported by National Natural Science Foundation of China Nos.51173110 & 51103086.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.561     OR     https://www.cjmr.org/EN/Y2015/V29/I8/607

Nanosilica Nanosilica with Si69
15 nm 30 nm 80 nm 15 nm 30 nm 80 nm
t10/min 9.95 9.72 8.44 8.75 8.92 8.12
t90/min 31.62 26.18 22.47 20.75 19.58 20.73
ML/dNm 0.111 0.163 0.132 0.103 0.057 0.007
MH/dNm 4.738 4.752 4.762 3.727 3.883 3.440
MH-ML /dNm 4.627 4.589 4.630 3.624 3.826 3.433
Tensile strength/MPa 8.96 12.28 14.31 16.29 19.24 14.60
Elongation at break /% 503 635 582 1048 883 810
Modulus at 100%/MPa 1.0 1.0 1.3 0.9 1.0 0.9
Modulus at 300%/MPa 2.8 2.3 3.8 2.0 2.5 2.7
Table 1  Curing and mechanical properties of composite materials
Fig.1  Effect of Si69 on the Mullins effect of the nano-silica /NR composites, nano-silica of 15 nm/NR (a), 30 nm/NR (b), 80 nm/NR (c); nano-silica with Si69 of 15 nm/NR (d), 30 nm/NR (e), 80 nm/NR (f)
Fig.2  Curves of elastic modulus G' vs. strain of nano-silica of 15 nm/NR (a), 30 nm/NR (b), 80 nm/NR (c) and nano-silica with Si69 of 15 nm/NR (d), 30 nm/NR (e), 80 nm/NR (f)
Fig.3  Curves of tanδ vs. strains of nano-silica of 15 nm/NR (a), 30 nm/NR (b), 80 nm/NR (c) and nano-silica with Si69 of 15 nm/NR (d), 30 nm/NR (e), 80 nm/NR (f)
Fig.4  Compressed heat performance of nano-silica/NR composites
Fig.5  Impact of DMA of nano-silica/NR composites without Si69 (a) and with Si69 (b)
Fig.6  SEM iamges of nano-silica / NR composites, (a) 15 nm nano-silica without Si69, (b) 30 nm nano-silica without Si69, (c) 80 nm nano-silica without Si69, (d) 15nm nano-silica with Si69, (e) 30 nm nano-silica with Si69, (f) 80 nm nano-silica with Si69
1 LI Xi,LIU Lianli, WANG Lili, Status quo and progress in research nano-SiO2, Journal of Bohai University( Natural Science Edition), 27(4), 304(2006)
1 (李 曦, 刘连利, 王莉莉, 纳米二氧化硅的研究现状与进展, 渤海大学学报(自然科学版), 27(4), 304(2006))
2 S. J. Ahmadi, Y. D. Huang, W. Li,Synthetic Routes, Properties and future application of polimer-layered silicate nanicomposites, Mater. Sci., 39(6), 1919(2004)
3 ZHANG Yuefeng,ZHANG Yuqing, Applications and research progress of composite nano-SiO2, Journal of Tarim University, 22(1), 152(2010)
3 (张越峰, 张裕卿, 复合纳米二氧化硅的应用研究进展, 塔里木大学学报, 22(1), 152(2010))
4 LIU Jingchao,LI Xiaobing, ZHANG Hualin, YANG Yahui, FU Wanli, Study of epoxy resin reinforced and toughened by nm SiO2, Chinese Journal of Colloid & Polymer, 18(4), 15(2000)
4 (刘竞超, 李小兵, 张华林, 杨亚辉, 傅万里, 纳米二氧化硅增强增韧环氧树脂的研究, 胶体与聚合物, 18(4), 15(2000))
5 YANG Qingzhi, Practical Rubber Process Engineering (Beijing, Chemical Industry Press, 2005)p.93-96
6 S. S. Choi,Improvement of properties of silica-filled natural rubber composites using polychloroprene, J. Appl. Polym. Sci., 83, 2609(2002)
7 S. S. Choi,Improvement of properties of silica-filled styrene-butadiene rubber compounds using acrylonitrile butadiene rubber, J. Appl. Polym. Sci., 79, 1127(2001)
8 ZHANG Liqun,WU Youping, WANG Yiqing, The nano-reinforcing and nano-compounding technique of rubber, China Synthetic Rubber Industry, 23(2), 71(2000)
8 (张立群, 吴友平, 王益庆, 橡胶的纳米增强及纳米复合技术, 合成橡胶工业, 23(2), 71(2000))
9 G. R. Hamed,Reinforcement of rubber, Rubber Chemistry and Technology, 73(3), 524(2000)
10 LI Guangliang, Silicone Polymer Chemistry (Beijing, Science Press, 1998)p.149
11 S. Wolff, U. Gorl, M. J. Wang,How does silica differ from carbon black, Eur. Rubb. J., 176(1), 17(1994)
12 M. L. Hair, W. Hsrtl,Acidity of surface hydroxyl groups, The Journal of Physical Chemistry, 74(1), 91(1970)
13 J. A. Hockey, B. A. Pethica,Surface hydration of silicas, Transactions of the Faraday Society, 57, 2247(1961)
14 M. J. Wang, S. Wolff, J. B. Donnet,Filler-elstomer interactions: Silica surface energies and interactions with model compounds, Rubber Chem. Technol., 64(3), 559(1990)
15 ZHANG Bijun,HE Lizhong Bijun, Preliminary study of silica and natural rubber coupling agent Si69 interaction mechanism, Carbon Black Industry, 12(5), 26(1992)
15 (张碧俊, 何立中, 白炭黑偶联剂Si69及天然胶相互作用机理的初步探讨, 炭黑工业, 12(5), 26(1992))
16 A. Ansarifar, L. Wang, R. J. Ellis,Enhancing the mechanical properties of styrene-butadiene rubber by optimizing the chemical bonding between silanized silica nanofiller and the rubber, Journal of Applied Polymer Science, 105(2), 322(2007)
17 JIANG Qibin,JIA Demin, NING Kaijun, YAN Zhiyun, Interaction between carbon black and silica with a coupling agent Si69, China Synthetic Rubber Industry, 26(6), 362(2003)
17 (姜其斌, 贾德民, 宁凯军, 严志云, 炭黑和白炭黑与偶联剂Si69的相互作用, 合成橡胶工业, 26(6), 362(2003))
18 GAO Yi,ZHAO Suhe, LIU Xiao, Characterization and evaluation on organization degree of nano-silica, Synthetic Rubber Industry, 29(6), 424(2006)
18 (高 轶, 赵素合, 刘 晓, 纳米SiO2粉体有机化程度的表征及评价, 合成橡胶工业, 29(6), 424(2006))
[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[7] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[8] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[9] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[10] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[11] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[12] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[13] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
[14] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
[15] TAN Xi, SONG Yuzhe, SHI Xin, QIANG Jin, WEI Tingxuan, LU Qihai. Magnetization Reversal Field and Magneto-Resistor of Spin Valve[J]. 材料研究学报, 2020, 34(4): 272-276.
No Suggested Reading articles found!