Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (8): 576-582    DOI: 10.11901/1005.3093.2014.696
Current Issue | Archive | Adv Search |
Corrosion Performance of Newly Developed Al-Mg Alloys
Chunyan MENG,Di ZHANG(),Linzhong ZHUANG,Jishan ZHANG
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing,Beijing 100083, China
Cite this article: 

Chunyan MENG,Di ZHANG,Linzhong ZHUANG,Jishan ZHANG. Corrosion Performance of Newly Developed Al-Mg Alloys. Chinese Journal of Materials Research, 2015, 29(8): 576-582.

Download:  HTML  PDF(8508KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of the newly developed Al-Mg alloys was investigated in terms of their alloying element and thermo-mechanical treatments by means of intergranular corrosion test, exfoliation corrosion test, scanning electron microscopy and transmission electron microscopy. The results show that, with the increase of Mg content the mass loss of the alloys in concentrated nitric acid increased, correspondingly their intergranular corrosion resistance decreases. Zn addition to the Al-Mg alloys led to the formation of Mg32(Al, Zn)49 phase at the grain boundary, which dramatically increased the intergranular corrosion resistance of the alloys. The corrosion resistance of the alloys was also modified by thermo-mechanical treatment. Both intergranular corrosion resistance and exfoliation corrosion resistance of the alloys were dramatically increased by a proper post stabilizing treatment after cold rolling reduction. The residual stress, higher dislocation density and morphology of elongated grains after cold rolling reduction can lead to more continuous precipitation at the grain boundary, thus decrease the corrosion resistance of the alloys.

Key words:  metallic materials      Al-Mg alloys      intergranular corrosion      exfoliation corrosion      stabilizing treatment     
Received:  24 November 2014     
Fund: *Supported by National Natural Science Foundation of China No.51301017, the Beijing Laboratory of Metallic Materials and Processing for Modern Transportation and the Funds from State Key Laboratory for Advanced Metals and Materials of China No. 2014Z-09.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.696     OR     https://www.cjmr.org/EN/Y2015/V29/I8/576

Alloy No. Mg Mn Zn Cu Fe Cr Ti Al
0 5.7 0.8 0.0 0.15 0.2 0.03 0.07 Bal.
1 5.0 0.8 0.6 0.15 0.2 0.03 0.07 Bal.
2 5.5 0.8 0.6 0.15 0.2 0.03 0.07 Bal.
3 5.8 0.8 0.6 0.15 0.2 0.03 0.07 Bal.
4 5.5 0.8 1.0 0.15 0.2 0.03 0.07 Bal.
5 5.8 0.8 1.0 0.15 0.2 0.03 0.07 Bal.
Table 1  Chemical compositions of the tested alloys (mass fraction, %)
Temper Treatment process Experimental test
A cold hardening recrystallization-cold rolling Intergranular corrosion
B stabilization recrystallization-cold rolling- stabilization Intergranular corrosion
C cold hardening+ sensitizing treatment recrystallization-cold rolling- sensitizing Intergranularcorrosion exfoliation corrosion
D stabilization+ sensitizing treatment recrystallization-cold rolling-stabilization-sensitizing Intergranular corrosion exfoliation corrosion
Table 2  Table 2Heat treatment in this study
Fig.1  Mass loss of the alloys under different conditions after NAMLT test
Fig.2  SEM images of Alloy 4 under (a-b) stabilizing, (c-d) stabilizing and sensitizing treatmentafter NAMLT test
Fig.3  SEM images of Alloy 3understabilizing and sensitized condition after NAMLT test (a) LT-ST, (b) L-LT
Fig.4  TEM image of grain boundary of (a) Alloy 0 and (b) Alloy 3
Fig.5  HRTEM image for Mg32(Al, Zn)49 (a), The magnified view of solid- yellow boxed area in (a) (b), The FFT image of Mg32(Al, Zn)49 (c)
Fig.6  Exfoliation corrosion morphologies of Alloy 1 (a), Alloy 2 (b), Alloy 3 (c), Alloy 4 (d) and Alloy 5 (e) after stabilizing and sensitizing treatment
Fig.7  Exfoliation corrosion morphologies of Alloy 1 (a) and Alloy 3 (b) after cold rolled and sensitizingtreatment
1 HUO Richang,SHI Zhiming, YUAN Xiaoming, Effect of cold deformation on microstructure of 5182 aluminium alloy, Journal of Inner Mongolia University of Science and Technology, 30(2), 114(2011)
1 (霍日昌, 史志铭, 袁晓鸣, 冷变形对5182铝合金组织的影响, 内蒙古科技大学学报, 30(2), 114(2011))
2 ZHANG Ke,HUANG Guangjie, WANG Lingyun, LIU Zhenghong, Effects of cold deformation and stabilizing treatment on corrosion resistance of 5083 aluminum alloy, Materials for Mechanical Engineering, 35(9), 5(2011)
2 (张 珂, 黄光杰, 汪凌云, 刘正宏, 冷变形量及稳定化处理对5083铝合金耐腐蚀性能的影响, 机械工程材料, 35(9), 5(2011))
3 R. K. Gupta, R. Zhang, C. H. J. Davies, N. Birbilis,Influence of Mg content on the sensitization and corrosion of Al-xMg(-Mn) Alloys, Corrosion, 69(11), 1081(2013)
4 TANG Mingjun,JI Zesheng, LV Xinyu, The research progress of 5xxx aluminium alloy, Light alloy fabrication technology, 32(7), 1(2004)
4 (唐明君, 吉泽升, 吕新宇, 5×××系铝合金的研究进展, 轻合金加工技术, 32(7), 1(2004))
5 GUO Zhibin,5056 aluminum alloy cold-deforming products precipitation effect, Light alloy fabrication technology, 38(10), 27(2010)
5 (郭志斌,5056铝合金冷变形制品的沉淀效应, 轻合金加工技术, 38(10), 27(2010))
6 R. E. Sanders Jr, P. A. Hollinshead, E. A. Simielli,Industrial development of non-heat treatable aluminum alloys, Materials Forum, 28, 53(2004)
7 L. Kramer, M. Phillippi, W. T. Tack, C. Wong,Locally reversing sensitization in 5xxx aluminum Plate, Journal of Materials Engineering andPerformance, 21(6), 1025(2012)
8 R. Ender, P. Miljana,Problems and prospect of Al-Mg alloys application in marine constructions, Journal of Metallurgy, 297(2006)
9 R. H. Jones, V. Y. Gertsman, J. S. Vetrano, C. F. WindischJr,Crack-particle interactions during intergranular stress corrosion of AA5083 as observed by cross-section transmission electron microscopy, ScriptaMaterialia, 50(10), 1355(2004)
10 Y. Yang, T. Allen. Direct visualization of β phase causing intergranular forms of corrosion in Al-Mg alloys, Materials Characterization, 80(1), 76(2013)
11 R. C. Picu, D. Zhang. Atomistic study of pipe diffusion in Al-Mg alloys, ActaMaterialia, 52(1), 161(2004)
12 C. Y. Meng, D. Zhang, H. Cui, L. Z. Zhuang, J. S. Zhang,Effect of stabilizing treatment on the intergranular corrosion behavior of high strength Al-Mg alloys, Mater Science Forum, 794, 253(2014)
13 L. Tan, T. R. Allen,Effect of thermomechanical treatment on the corrosion of AA5083, Corrosion Science, 52(2), 548(2010)
14 X. G. Fan, D. M. Jiang, Q. C. Meng,The microstructural evolution of an Al-Zn-Mg-Cu alloy during homogenization, Materials Letters, 60, 1475(2006)
15 L. F. Mondolfo, Aliminum alloys: structure and propertys, (Beijing, The Press of Metallurgical Industry, 1988) p.78
15 (78)
16 N. Birbilis, R. G. Buchheit,Electrochemical characteristics of intermetallic phases in aluminum alloys, Journal of The Electrochemical Society, 152(4), B104(2005)
17 M. Keddam, C. Kuntz, H. Takenouti, D. Schustert, D. Zuili,Exfoliation corrosion of aluminium alloys examined by electrode impedance, ElectrochimicaActa, 42(1), 87(1997)
18 A. Aballe, M. Bethencourt, F.J. Botana,Localized alkaline corrosion of alloy AA5083 in neutral 3.5% NaCl solution, Corrosion Science, 43, 1657(2001)
19 K. Jafarzadeh, T. Shahrabi, S. M. M. Hadavi, M. G. Hosseini,Role of chloride ion and dissolved oxygen in electrochemical corrosion of AA5083-H321 aluminum-magnesium alloy in NaCl solutions under flow conditions, Journal of Materials Scienceand Technology, 23(5), 623(2007)
20 K. A. Yaskau, M. L. Zheludkevich, S. V. Lamaka, M. G. S. Ferreira,Role of intermetallic phases in localized corrosion of AA5083, ElectrochimicaActa, 52, 7651(2007)
21 J. R. Davis,Corrosion of aluminium and aluminium alloys, American society for Metals, Materials Park, OH, 1999
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!