Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (7): 529-534    DOI: 10.11901/1005.3093.2014.434
Current Issue | Archive | Adv Search |
Hydrothermal Synthesis and Properties of ZnO Nanorod Arrays
Yang TANG(),Ying ZHAO,Zengguang ZHANG,Jie CHEN
National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China
Cite this article: 

Yang TANG,Ying ZHAO,Zengguang ZHANG,Jie CHEN. Hydrothermal Synthesis and Properties of ZnO Nanorod Arrays. Chinese Journal of Materials Research, 2015, 29(7): 529-534.

Download:  HTML  PDF(2957KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

ZnO nanorods arrays were synthesized by hydrothermal method from an aqueous solution of Zn(CH3COO)2 and C6H12N4 with additives of NH4NO3 and Al(NO3)3. The results show that the use of NH4NO3 in the solution leads to a decrease in nonradiative recombination centers in the ZnO nanorods by lowering their defect density. The reduction of the nonradiative recombination in ZnO nanorods results in a descent in the Stokes shift of the nanorods by 49%. In addition, the optical band gap of the ZnO nanorods could be adjusted in a range of 3.36-3.57 eV by controlling the additives concentration in the solution. The increase of the carrier concentration as a result of the Al doping leads to a blue shift of the optical band gap of the ZnO nanorods to 3.56-3.57 eV, which can be ascribed to the Burstein-Moss effect.

Key words:  inorganic non-metallic materials      optical band gap      hydrothermal method      nanorods     
Received:  21 August 2014     
Fund: *Supported by National Natural Science Foundation of China No.61404007.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.434     OR     https://www.cjmr.org/EN/Y2015/V29/I7/529

Sample NH4NO3/mmol/L Al(NO3)3/mmol/L Band gap energy/eV Stokes shift/meV
1 - - 3.38 114
2 20 - 3.38 113
3 40 - 3.36 90
4 60 - 3.36 91
5 80 - 3.35 85
6 - 5 3.57 269
7 - 10 3.56 269
8 40 5 3.36 94
9 40 10 3.37 102
Table 1  Solution recipes for fabricating samples 1-9, and the ZnO optical band gap and Stokes shift. <br/>4 mmol/L Zn(CH3COO)2 and 4 mmol/L C6H12N4 are included in all the solution recipes
Fig.1  Transmission spectra of samples 1-9
Fig.2  SEM images of samples 1, 3, 7 and 9
Fig.3  Plots of ((-lnT)*hn)2 vs. hn in samples 1-9. The red line is the linear fitting curve
Fig.4  Room temperature photoluminescence spectra of samples 1-9
1 SHEN Dezhen,MEI Zengxia, LIANG Hhuili, DU Xiaolong, YE Jiandong, GU Shulin, WU Yuxi, XU Chunxiang, ZHU Gangyi, DAI Jun, CHEN Mingming, JI Xu, TANG Zikang, SHAN Chongxin, ZHANG Baolin, DU Guotong, ZHANG Zhenzhong, ZnO-based materials, heterojunction and photoelectronic devices, Chin. J. Lumin., 35(1), 1(2014)
1 (申德振, 梅增霞, 梁会力, 杜小龙, 叶建东, 顾书林, 吴玉喜, 徐春祥, 朱刚毅, 戴 俊, 陈明明, 季 旭, 汤子康, 单崇新, 张宝林, 杜国同, 张振中, 氧化锌基材料、异质结构及光电器件, 发光学报, 35(1), 1(2014))
2 LI Honglin,ZHANG Zhong, LU Yingbo, HUANG Jinzhao, LIU Ruxi, First-principles and experimental study on the electronic and optical properties of Eu doped ZnO structure, Acta Metallurgica Sinica, 49(4), 506(2013)
2 (李泓霖, 张 仲, 吕英波, 黄金昭, 刘如喜, Eu掺杂ZnO结构光电性质的第一性原理及实验研究, 金属学报, 49(4), 506(2013))
3 LI Xuefei,ZHANG Ruifeng, Preparation and photocatalytic degradation properties of a Fe(III)-taPc/ZnO NWs/SiO2 ternary composite photo-catalyst, Chinese Journal of Materials Research, 27(5), 526(2013)
3 (李雪飞, 张瑞丰, Fe(III)-taPc/ZnO NWs/SiO2三元复合光催化剂的制备和性能, 材料研究学报, 27(5), 526(2013))
4 ZHAI Yingjiao,LI Jinhua, CHEN Xinying, SONG Xinghui, REN Hang, FANG Xuan, FANG Fang, CHU Xueying, WEI Zhipeng, WANG Xiaohua, Synthesis and characterization of Cd-doped ZnO nanoflowers and its photocatalytic activity, Chinese Optics, 7(1), 124(2014)
4 (翟英娇, 李金华, 陈新影, 宋星惠, 任 航, 方 铉, 方 芳, 楚学影, 魏志鹏, 王晓华, 镉掺杂氧化锌纳米花的制备及其光催化活性, 中国光学, 7(1), 124(2014))
5 ZHANG Kai, HUANG Jianye, WANG Fenghui, Wetting behavior of superhydrophobic materials under hydraulic pressure, Chinese Journal of Materials Research, 28(4), 281(2014)
5 (张 凯, 黄建业, 王峰会, 超疏水材料在液压作用下的润湿行为, 材料研究学报, 28(4), 281(2014))
6 WANG Xiaohong,XIE Wenjing, HAO Chen, ZHANG Pengfei, FU Xiaoqi, SI Naichao, Liquid phase synthesis of flower cluster-like ZnO via lignosite template and its photocatalytic property, Acta Metallurgica Sinica, 49(9), 1098(2013)
6 (王晓红, 谢文静, 郝 臣, 张鹏飞, 傅小奇, 司乃潮, 木素磺酸钙模板法液相合成花簇状ZnO及其光催化性能, 金属学报, 49(9), 1098(2013))
7 H. Li, S. Jiao, S. Bai, H. Li, S. Gao, J.Wang, Q. Yu, F. Guo, L. Zhao,Precursor-controlled synthesis of different ZnO nanostructures by the hydrothermal method, Phys. Status Solidi (a), 211, 595(2013)
8 H. Li, S. Jiao, H. Li,Growth and characterization of ZnO nanoflakes by hydrothermal method: effect of hexamine concentration , J. Mater. Sci.-Mater. Electron, 25, 2569(2014)
9 S. Jiao, K. Zhang, S. Bai, H. Li, S. Gao, H. Li, J. Wang, Q. Yu, F. Guo, L. Zhao,Controlled morphology evolution of ZnO nanostructures in the electrochemical deposition: From the point of view of chloride ions, Electrochim. Acta, 111, 64(2013)
10 S. Sun, S. Jiao, K. Zhang, D. Wang, S. Gao, H. Li, J. Wang, Q. Yu, F. Guo,Nucleation effect and growth mechanism of ZnO nanostructures by electrodeposition from aquous zinc nitrate baths, J. Cryst. Growth, 359, 15(2012)
11 TANG Yang,CHEN Jie, Optical band gap blue shift and stokes shift in Al-doped ZnO nanorods by electrodeposition, Chin. J. Lumin., 35(10), 1165(2014)
11 (汤 洋, 陈 颉, 电沉积掺铝氧化锌纳米柱的光学带隙蓝移与斯托克斯位移, 发光学报, 35(10), 1165(2014))
12 P. Sagar, P. K. Shishodia, R. M. Mehra, H. Okada, A. Wakahara, A. Yoshida,Photoluminescence and absorption in sol-gel-derived ZnO films, J. Lumin., 126, 800(2007)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] HU Qing, WU Chunfang, ZHANG Kaifeng, PAN Hao, LI Kun. Preparation of Small Gold Nanorods[J]. 材料研究学报, 2022, 36(7): 519-526.
No Suggested Reading articles found!