Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (7): 535-541    DOI: 10.11901/1005.3093.2014.446
Current Issue | Archive | Adv Search |
Effect of Alloying Elements on Mechanical Property and Fracture Toughness of A7N01S-T5 Aluminum Alloy
Chao QIN1,Guoqing GOU1,**(),Xiaoli CHE1,Hui CHEN1,Jia CHEN1,2
1. School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
2. Chengdu Technician College, Chengdu 611731, China
Cite this article: 

Chao QIN,Guoqing GOU,Xiaoli CHE,Hui CHEN,Jia CHEN. Effect of Alloying Elements on Mechanical Property and Fracture Toughness of A7N01S-T5 Aluminum Alloy. Chinese Journal of Materials Research, 2015, 29(7): 535-541.

Download:  HTML  PDF(5552KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influence of alloying elements on mechanical property and fracture toughness of A7N01S-T5 aluminum alloy was investigated on the basis of impact test, tensile test and three point bending test. The results show that with a proper addition of the selected alloying elements such as Zn(4.34), Mg(1.43), Mn(0.27), Cr(0.13), Zr(0.12) and Ti(0.066), the A7N01S-T5 aluminum alloy possesses a comprehensive performance with tensile strength 415 MPa, yield strength 378 MPa, specific elongation 13.49%, impact energy 12.3 J and fracture toughness 28.950 kJm-2 respectively. It is noted that among others the content of Zn and Mg is the main factor influencing both the strength and ductility, therefore, which should be carefully chosen. It is observed that η′ phase precipitates in the grain interior and η phase precipitates discontinuously at grain boundaries for the A7N01S-T5 aluminum alloy with proper chemical composition.

Key words:  metallic materials      A7N01S-T5 alloy      alloying element      microstructure      mechanical properties      fracture toughness     
Received:  25 August 2014     
Fund: *Supported by National Basic Research Program of China No. 2014CB660807, National Science & Technology Pillar Program No. 2015BAG12B01, and the Central University Basic Research of China No.2682014CX003.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.446     OR     https://www.cjmr.org/EN/Y2015/V29/I7/535

Fig.1  Schematic of sample size for three point bending test
Sample No. Si Fe Cu Factor A Factor B Factor C Al
Zn Mg Mn Cr Zr Ti
1# 0.110 0.15 0.084 4.34 (4.2-4.5) 1.43 (1.4-1.6) 0.27 (0.2-0.35) 0.13 (0.1-0.15) 0.12 (0.1-0.15) 0.066 (0.05-0.1) Bal.
2# 0.093 0.15 0.079 4.33 (4.2-4.5) 1.47 (1.4-1.6) 0.36 (0.35-0.5) 0.24 (0.2-0.3) 0.16 (0.15-0.25) 0.028 (0-0.05) Bal.
3# 0.075 0.16 0.084 4.69 (4.5-4.8) 1.63 (1.6-1.8) 0.22 (0.2-0.35) 0.14 (0.1-0.15) 0.17 (0.15-0.25) 0.027 (0-0.05) Bal.
4# 0.085 0.16 0.073 4.54 (4.5-4.8) 1.59 (1.6-1.8) 0.34 (0.35-0.5) 0.24 (0.2-0.3) 0.13 (0.1-0.15) 0.097 (0.05-0.1) Bal.
Table 1  Chemical composition of A7N01S-T5 Al alloy (%, mass fraction)
Sample No. Rm/MPa R0.2/MPa A/% R(R0.2/Rm) KV2/J Jm(12)/kJm-2
1# 415 378 13.49 0.9108 12.3 28.950
2# 401 363 14.98 0.9052 16.13 43.835
3# 436 405 12.71 0.9288 9.33 19.180
4# 419 382 12.31 0.9116 10.67 24.644
Table 2  Mechanical properties and fracture toughness of A7N01S-T5 alloy at various composition
Fig.2  Relationship of fracture toughness and impact energy
Factor Level Rm/MPa R0.2/MPa A/% KV2/J Jm(12)/kJm-2
A 1 408 371 14.24 14.32 36.393
2 428 394 12.51 10 21.912
B 1 426 392 13.1 10.82 24.065
2 410 373 13.65 13.4 34.240
C 1 417 380 12.9 11.49 26.297
2 419 384 13.85 12.73 31.508
Target component Influence degree A2B1C2(3#) A2B1C2(3#) A1B2C2(2#) A1B2C2(2#) A1B2C2(2#)
A>B>C A>B>C A>C>B A>B>C A>B>C
Table 3  Range analysis results
Fig.3  Metallographic structure of A7N01S-T5 alloy at various composition, (a) 1#, (b) 2#, (c) 3#, (d) 4#
Fig.4  SEM images of A7N01S-T5 alloy at various composition and EDX results of constituent particles, (a) 1#, (b) 2#, (c) 3#, (d) 4#. w: mass fraction, x: atomic fraction
Fig.5  Fractographs of three point bending test for A7N01S-T5 alloy at various composition, (a) 1#, (b) 2#, (c) 3#, (d) 4#
1 HUANG Ying,DENG Yunlai, CHEN Long, LIAO Fei, ZHANG Xinming, Microstructure, texture and property of extruded 7N01 aluminum alloy plates, Chinese Journal of Materials Research, 28(7), 541(2014)
1 (黄 英, 邓运来, 陈 龙, 廖 飞, 张新明, 7N01铝合金挤压板的微结构、织构和性能, 材料研究学报, 28(7), 541(2014))
2 GOU Guoqing,HUANG Nan, CHEN Hui, MENG Lichun, WU Peipei, Research on stress corrosion behavior of A7N01S-T5 aluminum alloy for high speed train, Materials Science and Technology, 20(4), 1343(2012)
2 (苟国庆, 黄 楠, 陈 辉, 孟立春, 吴沛沛, 高速列车A7N01S-T5铝合金应力腐蚀行为研究, 材料科学与工艺, 20(4), 1343(2012))
3 LIU Jingan, XIE Shuisheng, Application and Development of Aluminum Alloy (Beijing, Metallurgy Industry Press, 2004)p.17
3 (17)
4 P. C.Bai, X. H. Hou, X. Y. Zhang, C. W. Zhao, Y. M. Xing,Microstructure and mechanical properties of a large billet of spray formed Al-Zn-Mg-Cu alloy with high Zn content, Materials Science and Engineering A, 508, 23(2009)
5 M. M. Sharma, M. F. Amateau, T. J. Eden,Aging response of Al-Zn-Mg-Cu spray formed alloys and their metal matrix composites, Materials Science and Engineering A, 424, 87(2006)
6 LANG Yujing,CUI Hua, CAI Yuanhua, ZHANG Jishan, Dynamic precipitation of 7050 Al alloy on the different deformation temperature, Chinese Journal of Materials Research, 26(2), 143(2012)
6 (郎玉婧, 崔 华, 蔡元华, 张济山, 7050铝合金在不同温度变形的动态析出行为, 材料研究学报, 26(2), 143(2012))
7 Z. B. He, Z. M. Yin, S. Lin, Y. Deng, B. C. Shang, X. A. Zhou,Preparation, microstructure and properties of Al-Zn-Mg-Sc alloy tubes, Journal of Rare Earths, 28(4), 641(2010)
8 S. W. Nam, D. H. Lee,The effect of Mn on the mechanical behavior of Al alloys, Metals and Materials, 6(1), 13(2000)
9 XU Lianghong,TIAN Zhiling, PENG Yun, ZHANG Xiaomu, Effects of trace elements on microstructure and mechanical properties of high strength aluminum alloy welds, The Chinese Journal of Nonferrous Metals, 18(6), 959(2008)
9 (许良红, 田志凌, 彭 云, 张晓牧, 微量元素对高强铝合金焊缝组织和力学性能的影响, 中国有色金属学报, 18(6), 959(2008))
10 A. Deschamps, Y. Brechet,Influence of quench and heating rates on the ageing response of an Al-Zn-Mg-( Zr) alloy, Materials Science and Engineering A, 251, 200(1998)
11 Z. M. Yin, L. Yang, Q. L. Pan, F. Jiang,Effect of minor Sc and Zr on microstructures and mechanical properties of Al-Zn-Mg based alloys, Nonferrous Met Soc.China, 11(6), 822(2001)
12 YANG Shoujie,XIE Youhua, ZHU Na, DAI Shenglong, LU Zheng, SU Bin, YAN Minggao, Effect of zirconinm on the mechanical properties of a super-high strength aluminum alloy, Chinese Journal of Materials Research, 16(4), 406(2002)
12 (杨守杰, 谢优华, 朱 娜, 戴圣龙, 陆 政, 苏 彬, 颜鸣皋, Zr对Al-Zn-Mg-Cu系超高强铝合金力学性能的影响, 材料研究学报, 16(4), 406(2002))
13 T. S. Srivatsan, S. Sriram, D. Veeraraghavan, V.K. Vasudevan,Microstructure tensile deformation and fracture behaviour of aluminum alloy 7055, Journal of Materials Science, 32, 2883(1997)
14 GOU Guoqing,HUANG Nan, CHEN Hui, LI Da, MENG Lichun, Research on corrosion behavior of welded joint of A7N01-T5 aluminum alloy for high-speed train, Transactions of the China Welding Institution, 32((10), 17(2011)
14 (苟国庆, 黄 楠, 陈 辉, 李 达, 孟立春, 高速列车A7N01S-T5铝合金焊接接头盐雾腐蚀行为研究, 焊接学报, 32(10), 17(2011))
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!