Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (5): 321-336    DOI: 10.11901/1005.3093.2014.724
Current Issue | Archive | Adv Search |
Recent Advances in Organic Electroluminescent Materials and Devices
Lian DUAN(),Yong QIU()
Department of Chemistry, Tsinghua University, Beijing 100084, China
Cite this article: 

Lian DUAN,Yong QIU. Recent Advances in Organic Electroluminescent Materials and Devices. Chinese Journal of Materials Research, 2015, 29(5): 321-336.

Download:  HTML  PDF(4603KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Since the invention of organic light-emitting diodes (OLEDs) by Dr. CW Tang in 1987, researches in related fields have been developed rapidly. Now, small to medium size OLED displays have already been commercialized. Large OLED TVs and OLED lightings have also emerged in real applications. The further development of the OLED technology calls for intensive research on organic light-emitting materials and devices. This report reviewed the most focused issues as well as the main progress in the field of OLEDs in the recent years. It is shown that researchers have paid attentions to both technical innovations and theoretical researches, such as the design of new molecules, developing of new device technology, and understanding of light-emitting and transporting mechanisms of organic semiconductors. The developing trends of organic light-emitting materials and devices are summarized as follows: 1) molecular design for high performance phosphorescent materials; 2) novel fluorescent materials and their light emitting mechanisms; 3) new technologies for high performance white OLEDs; 4) new technologies for solution-processed devices and flexible devices; 5) the influences of molecular packing, disorder and doping on the charge transporting properties of organic semiconductors. Moreover, the current situations and developing trends of international OLED display and lighting industries are discussed.

Key words:  review      organic light emitting diodes      organic light-emitting materials      light-emitting mechanisms      charge transport in organic semiconductors     
Received:  21 August 2014     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.724     OR     https://www.cjmr.org/EN/Y2015/V29/I5/321

Fig.1  Molecular structures of some reported phosphorescent host materials based on phenylphosphine oxide groups[5-7, 9]
Fig.2  Molecular structures of the reported phosphorescent host materials based on aromatic heterocyclic nitro groups[10-15]
Fig.3  Molecular structures of the reported Pt and Ir based metal-organic complexes for phosphorescent emission[16-19]
Fig.4  Molecular structures of the reported TTA delayed fluorescent materials[20-25]
Fig.5  Molecular structures of the reported TADF materials[26-28]
Fig.6  Diagram for TADF sensitized fluorescence based on host materials with small ΔEST[31]
Fig.7  OLED device structures with solution-processed WO3/PEDOT: PSS as the hole transporting layers and performances of the devices[49]
Fig.8  Wave guide mode and current efficiencies of the LEC device using nano-compounds as transparent anode[52]
Fig.9  Printed flexible OLEDs fabricated by slot-die coating method[56]
Classification Company/Institution Time Size/cm2 Efficiency /(lm/W) Lifetime/LT50 (h) CRI
Device level (<4 mm2) Visionox 2013 / 99 > 50,000 87
NEC/Yamagata University 2013 / 156 / /
Panasonic /Idemitsu 2012 / 142 50,000 85
Panasonic /Idemitsu 2011 / 128 30,000 83
UDC 2010 / 113 30,000 /
Screen level LG Chemistry 2013 81 80 >100,000 84
Visionox 2013 41 40 10,000 87
NEC/Yamagata University 2013 20 75 / /
Panasonic /Idemitsu 2012 25 87 100,000 82
Philips/ Konica 2011 37 45 10,000 85
Table 1  Performances of white light OLEDs at Device level and Screen level (1000 cd/m2)
1 M. Pope, H. Kallmann, P. Magnante,Electrolum inescence in organic crystals, J. Chem. Phys., 38, 2042(1963)
2 C. W. Tang, S. A VanSlyke,Organic electroluminescent diodes, Appl. Phys. Lett., 51, 913(1987)
3 M. A. Baldo, D. F. O’ Brien, Y. You, et al., Highly efficient phosphorescent emission from organic electroluminescent devices, Nature, 395, 151(1998)
4 C. Adachi,Third generation OLED by hyperfluorescence, SID Symposium Digest of Technical Papers, 44, 513(2013)
5 H. Liu, G. Cheng, D. H. Hu, et al., A highly efficient, blue-phosphorescent device based on a wide-bandgap host/FIrpic: rational design of the carbazole and phosphine oxide moieties on tetraphenylsilane, Adv. Funct. Mater, 22, 2830(2012)
6 D. H. Yu, F. C. Zhao, C. C. Han, et al., Ternary ambipolar phosphine oxide hosts based on indirect linkage for highly efficient blue electrophosphorescence: towards high triplet energy, low driving voltage and stable efficiencies, Adv. Mater, 24, 509(2012)
7 C. L. Yang, L. P. Zhu, T. X Liu, et al., Using an organic molecule with low triplet energy as a host in a highly efficient blue electrophosphorescent device, Angew. Chem. Int. Ed., 53, 2147(2014)
8 H. Sasabe, J. Takamatsu, T. Motoyama, et al., High-efficiency blue and white organic light-emitting devices incorporating a blue iridium carbene complex, Advanced Materials, 22, 5003(2010)
9 H. H. Chou, C. H. Cheng,A highly efficient universal bipolar host for blue, green, and red phosphorescent OLEDs, Advanced Materials, 22, 2468(2010)
10 Z. M. Hudson, Z. B. Wang; M. G. Helander,et al., N-heterocyclic carbazole-based hosts for simplified single-layer phosphorescent OLEDs with high efficiencies, Adv. Mater, 24, 2922(2012)
11 D. D. Zhang, L. Duan, Y. L. Li, et al., Towards high efficiency and low roll-off orange electrophosphorescent devices by fine tuning singlet and triplet energies of bipolar hosts based on indolocarbazole/1, 3, 5-triazine hybrids, Adv. Funct. Mater., 2014, DOI: 10.1002/ 201303926
12 S. J. Su, C. Cai, J. J. Kido,RGB phosphorescent organic light-emitting diodes by using host materials with heterocyclic cores: effect of nitrogen atom orientations, Chemistry of Materials, 23, 274(2011)
13 E. Mondal, W. Y. Hung, H. C. Dai, et al., Fluorene-based asymmetric bipolar universal hosts for white organic light emitting devices, Adv. Funct. Mater., 24, 3096(2013)
14 H. Huang, Y. X. Wang, B. Pan, , et al., Simple bipolar hosts with high glass transition temperatures based on 1, 8-disubstituted carbazole for efficient blue and green electrophosphorescent devices with “ideal” turn-on voltage, Chem. Eur. J., 19, 1828(2013)
15 K. Wang, F. C. Zhao, C. G. Wang, et al., High-performance red, green, and blue electroluminescent devices based on blue emitters with small singlet–triplet splitting and ambipolar transport property, Adv. Funct. Mater, 23, 2672(2013)
16 D. B. Xia, B. Wang, B. Chen, et al., Self-host blue-emitting iridium dendrimer with carbazole dendrons: nondoped phosphorescent organic light-emitting diodes, Angew. Chem. Int. Ed., 53, 1048(2014)
17 H. Fukagawa, T. Shimizu, H. Hanashima, et al., Highly efficient and stable red phosphorescent organic light-emitting diodes using platinum complexes, Adv. Mater., 24, 5099(2012)
18 Z. M. Hudson, C. Sun, M. G. Helander, et al., Highly efficient blue phosphorescence from triarylboron-functionalized platinum(II) complexes of N-heterocyclic carbenes, J. Am. Chem. Soc., 134, 13930(2012)
19 T. Fleetham, J. Ecton, Z. X. Wang, et al., Single-doped white organic light-emitting device with an external quantum efficiency over 20%, Adv. Mater., 25, 2573(2013)
20 I. Cho, S. H. Kim, J. H. Kim, et al., Highly efficient and stable deep-blue emitting anthracene-derived molecular glass for versatile types of non-doped OLED applications, J. Mater. Chem., 22, 123(2012)
21 K. H. Lee, J. K. Park, J. H. Seo, et al., Efficient deep-blue and white organic light-emitting diodes based on triphenylsilane-substituted anthracene derivatives, J. Mater. Chem., 21, 13640(2011)
22 T. Zhang, D. Liu, Q. Wang, et al., Deep-blue and white organic light-emitting diodes based on novel fluorene-cored derivatives with naphthylanthracene endcaps, J. Mater. Chem., 21, 12969(2011)
23 J. H. Huang, J. H. Su, X. Li, et al., Bipolar anthracene derivatives containing hole- and electron-transporting moieties for highly efficient blue electroluminescence devices, J. Mater. Chem., 21, 2957(2011)
24 K. R. Wee, W. S. Han, J. E. Kim, et al., Asymmetric anthracene-based blue host materials: synthesis and electroluminescence properties of 9-(2-naphthyl)-10-arylanthracenes, J. Mater. Chem., 21, 1115(2011)
25 C. J. Chiang, A. Kimyonok, M. K. Etherington, et al., Ultrahigh efficiency fluorescent single and Bi-layer organic light emitting diodes: the key role of triplet fusion, Adv. Funct. Mater., 23, 739(2013)
26 A. Endo, K. Sato, K. Yoshimura, et al., Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes, Appl. Phys. Lett., 98, 083302(2011)
27 Q. S. Zhang, J. Li, K. Shizu, et al., Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes, J. Am. Chem. Soc., 134, 14706(2012)
28 H. Uoyama, K. Goushi, K. Shizu, et al., Highly efficient organic light-emitting diodes from delayed fluorescence, Nature, 492, 234(2012)
29 S. P. Huang, Q. S. Zhang, Y. Shiota, et al., Computational Prediction for Singlet- and Triplet-Transition Energies of Charge-Transfer Compounds, Journal of Chemical Theory and Computation, 9(9), 3872–3877(2013)
30 Q. S. Zhang, B. Li, S. P. Huang, et al., Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence, Nature Photonics, 8, 326(2014)
31 D. D. Zhang, L. Duan, C. Li, et al., High efficiency fluorescent organic light-emitting devices using sensitizing hosts with a small singlet-triplet exchange energy, Adv. Mater. 2014, DOI: 10.1002/adma.201401476.
32 K. Goushi, K. Yoshida, K. Sato, et al., Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion, Nat. Photon., 6, 253(2012)
33 V. Jankus, C. J. Chiang, F. Dias, et al., Deep blue exciplex organic light-emitting diodes with enhanced efficiency; P-type or E-type triplet conversion to singlet excitons? Adv. Mater., 25, 1455(2013)
34 H. Liu, G. Cheng, D. H. Hu, et al., A highly efficient, blue-phosphorescent device based on a wide-bandgap host/FIrpic: rational design of the carbazole and phosphine oxide moieties on tetraphenylsilane, Adv. Funct. Mater, 22, 2830(2012)
35 W. J. Li, Y. Y. Pan, R. Xiao, et al., Employing ~100% Excitons in OLEDs by Utilizing a Fluorescent Molecule with Hybridized Local and Charge-Transfer Excited State, Advanced Functional Materials, 24, 1606(2014)
36 D. Y. Kondakov, T. D. Pawlik, T. K. Hatwar, et al., Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic light-emitting diodes, J. Appl. Phys., 6, 124510(2009)
37 L. Duan, D. Q. Zhang, K. W. Wu, et al., Controlling the recombination zone of white organic light-emitting diodes with extremely long lifetimes, Adv. Funct. Mater., 21, 3540(2011)
38 H. Sasabe, J. Takamatsu, T. Motoyama, et al., High-efficiency blue and white organic light-emitting devices incorporating a blue iridium carbene complex, Adv. Mater., 22, 5003(2010)
39 S. L. Gong, Y. H. Chen, J. J. Luo, et al., Bipolar tetraarylsilanes as universal hosts for blue, green, orange, and white electrophosphorescence with high efficiency and low efficiency roll-off, Advanced Functional Materials, 21, 1168(2011)
40 C. Han, G. H. Xie, H. Xu, et al., A single phosphine oxide host for high-efficiency white organic light-emitting diodes with extremely low operating voltages and reduced efficiency roll-off , Advanced Materials, 23, 2491(2011)
41 J. Ye, C. J. Zheng, X. M. Ou, et al., Management of singlet and triplet excitons in a single emission layer: A simple approach for high-efficiency fluorescence/phosphorescence hybrid white organic light-emitting device., Adv. Mater., 24, 3410(2012)
42 Q. Wang, C. L. Ho, Y. B Zhao, et al., Reduced efficiency roll-off in highly efficient and color-stable hybrid WOLEDs: The influence of triplet transfer and charge-transport behavior on enhancing device performance, Organic Electronics, 11, 238(2011)
43 C. J. Zheng, J. Wang, J. Ye, et al., Novel efficient blue fluorophors with small singlet-triplet splitting: hosts for highly efficient fluorescence and phosphorescence hybrid WOLEDs with simplified structure, Advanced Materials, 25, 2205(2013)
44 L. J. Zhang, S. J. Hu, J. W. Chen, et al., A Series of Energy-Transfer Copolymers Derived from Fluorene and 4, 7-Dithienylbenzotriazole for High Efficiency Yellow, Orange, and White Light-Emitting Diodes, Advanced Functional Materials, 21, 3760(2011)
45 J. H. Zou, H. Wu, C. S. Lam, et al., Simultaneous optimization of charge-carrier balance and luminous efficacy in highly efficient white polymer light-emitting devices, Advanced Materials, 23, 2976(2011)
46 B. H Zhang, G. P. Tan, C. S. Lamet al., High-efficiency single emissive layer white organic light-emitting diodes based on solution-processed dendritic host and new orange-emitting iridium complex, Advanced Materials, 24, 1873(2012)
47 H. Gorter, M. J. J. Coenen, M. W. L. Slaats, et al., Toward inkjet printing of small molecule organic light emitting diodes, Thin Solid Films, 532, 11(2013)
48 S. Tekoglu, G. Hernandez-Sosa, E. Kluge, et al., Gravure printed flexible small-molecule organic light emitting diodes, Org. Electron., 14, 3493(2013)
49 S. H?fle, M. Bruns, S. Str?ssle, et al., Tungsten oxide buffer layers fabricated in an inert sol-gel process at room-temperature for blue organic light-emitting diodes, Adv. Funct. Mater., 25(30), 4113(2013)
50 Q. Fu, J. S. Chen, C. S. Shi, et al., Room-temperature sol?gel derived molybdenum oxide thin films for efficient and stable solution-processed organic light-emitting diodes, ACS. Appl. Mater. Interfaces, 5, 6024(2013)
51 S. Feng, L. Duan, L. D. Hou, et al., A comparison study of the organic small molecular thin films prepared by solution process and vacuum deposition: roughness, hydrophilicity, absorption, photoluminescence, density, mobility, and electroluminescence, J. Phys. Chem. C, 115, 14278(2011)
52 L. Li, J. J. Liang, S. Y. Chou, et al., A solution processed flexible nanocomposite electrode with efficient light extraction for organic light emitting diodes, Sci. Rep., 4, 4307(2014)
53 S. Kim, H. J. Kwon, S. Lee, et al., Low-power flexible organic light-emitting diode display device, Adv. Mater., 23, 3511(2011)
54 Z. Yu, X. Niu, Z. Liu, et al., Intrinsically stretchable polymer light-emitting devices using carbon nanotube-polymer composite electrodes, Adv. Mater., 23, 3989(2011)
55 W. Hu, X. Niu ,L. Li,et al., Intrinsically stretchable transparent electrodes based on silver-nanowire-crosslinked-polyacrylate composites, Nanotechnology, 23, 344002(2012)
56 A. Sandstr?m, H. F. Dam, F. C. Krebs, et al., Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating, Nat. Commun., 3, 1002(2012)
57 D. Yokoyama, H. Sasabe, Y. Furukawa, et al., Molecular stacking induced by intermolecular C-H···N hydrogen bonds leading to high carrier mobility in vacuum-deposited organic films, Advanced Functional Materials, 21, 1375(2011)
58 N. Li, P. F. Wang, S. L. Laiet al., Synthesis of multiaryl-substituted pyridine derivatives and applications in non-doped deep-blue OLEDs as electron-transporting layer with high hole-blocking ability, Advanced Materials, 22, 527(2010)
59 S. Y. Kim, W. I. Jeong, C. Mayr, et al., Organic light-emitting diodes with 30% external quantum efficiency based on a horizontally oriented emitter, Advanced Functional Materials, 23, 3896(2013)
60 H. Park, J. Lee, I. Kang, et al., Highly rigid and twisted anthracene derivatives: a strategy for deep blue OLED materials with theoretical limit efficiency, J. Mater. Chem., 22, 2695(2012)
61 H. Y. Li, L. Duan, Y. D. Sun, et al., Study of the hole and electron transport in amorphous 9, 10-Di-(2 '-Naphthyl) anthracene: the first-principles approach, J. Phys. Chem. C, 117, 16336(2013)
62 J. Li, Y. Zhao, H. S. Tan, et al., A stable solution-processed polymer semiconductor with record high-mobility for printed transistors, Scientific Reports, 2, 754(2012)
63 I. Kang, H. J. Yun, D. S. Chung, et al., Record high hole mobility in polymer semiconductors via side-chain engineering, J. Am. Chem. Soc., 135(40), 14896(2013)
64 H. R. Tseng, H. Phan, C. Luo, et al., High-mobility field-effect transistors fabricated with macroscopic aligned semiconducting polymers, Adv. Mater., 2014, DOI: 10.1002/adma.201305084
65 R. Noriega, J. Rivnay, K. Vandewal, et al., A general relationship between disorder, aggregation and charge transport in conjugated polymers, Nat. Mater., 12(11), 1038(2013)
66 R. Noriega, A. Salleo, A. J. Spakowitz,Chain conformations dictate multiscale charge transport phenomena in disordered semiconducting polymers, Proc. Natl. Acad. Sci. USA, 110(41), 16315(2013)
67 H. Y. Li, L. Duan, C. Li, et al., Transient space-charge-perturbed currents in organic materials: A Monte Carlo study, Org. Electron., 15(2), 524(2014)
68 H. Y. Li, L. Duan, D. Q. Zhang, et al., Transient space-charge-perturbed currents of N, N′-diphenyl-N, N′-bis(1-naphthyl)-1, 1′-biphenyl-4, 4′-diamine and N, N′-diphenyl-N, N′-bis(3-methylphenyl)-1, 1′-biphenyl-4, 4′-diamine in diode structures, Appl. Phys. Lett., 104(18), 183301(2014)
69 H. Y. Li, L. Duan, D. Q. Zhang, et al., Relationship between mobilities from time-of-flight and dark-injection space-charge-limited current measurements for organic semiconductors: A Monte Carlo study, J. Phys. Chem. C, 118(12), 6052(2014)
70 M. Abkowitz, J. S. Facci, M. Stolka, et al., Time-resolved space charge-limited injection in a trap-free glassy polymer, Chem. Phys., 177(3), 783(1993)
71 C. Y. H. Chan, K. K. Tsung, W. H. Choi, et al., Achieving time-of-flight mobilities for amorphous organic semiconductors in a thin film transistor configuration, Org. Electron., 14(5), 1351(2013)
72 H. H. Fong, K.C. Lun, S. K. So,Hole transports in molecularly doped triphenylamine derivative, Chem. Phys. Lett., 353, 407(2002)
73 K. K. Tsung, S. K. So,Carrier trapping and scattering in amorphous organic hole transporter, Appl. Phys. Lett., 92, 103315(2008)
74 B. X. Li, J. S. Chen, Y. B. Zhao, et al., Effects of carrier trapping and scattering on hole transport properties of N, N '-diphenyl-N, N '-bis(1-Naphthyl)-1, 1 '-biphenyl-4, 4 '-diamine thin films, Org. Electron., 12, 974(2011)
75 C. Li, L. Duan, Y. D. Sun, et al., Charge transport in mixed organic disorder semiconductors: trapping, scattering, and effective energetic disorder, J. Phys. Chem. C, 116, 19748(2012)
76 C. Li, L. Duan, H. Y. Li, et al., Universal trap effect in carrier transport of organic disorder semi- conductors: transition from shallow trapping to deep trapping, J. Phys. Chem. C, 118(20), 10651(2014)
77 S. Stankovich, D. A. Dikin, G. H. B. Dommett, et al., Graphene-based composite materials, Nature, 442, 282(2006)
78 K. Vakhshouri, D. R Kozub, C. C Wang, et al., Effect of miscibility and percolation on electron transport in amorphous poly(3-hexylthiophene)/phenyl-c-61-butyric acid methyl ester blends, Phys. Rev. Lett., 108, 026601(2012)
79 C. Li, L. Duan, H. Y. Li, et al., Percolative charge transport in a co-evaporated organic molecular mixture, Org.Electron., 14, 3312(2013)
[1] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[2] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[3] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[4] HE Ying, LI Chaoqun, CHEN Xiaoli, LONG Zhimei, LAI Jiaqi, SHAO Bin, MA Yilong, CHEN Dengming, DONG Jiling. Recent Development for Preparation Processes of Sm2Fe17N x Powders with High Magnetic Properties[J]. 材料研究学报, 2022, 36(5): 321-331.
[5] SHAO Siwu, ZHENG Yuting, AN Kang, HUANG Yabo, CHEN Liangxian, LIU Jinlong, WEI Junjun, LI Chengming. Progress on Application of Bias Technology for Preparation of Diamond Films[J]. 材料研究学报, 2022, 36(3): 161-174.
[6] ZHAO Ning, JIAO Da, ZHU Yankun, LIU Dexue, LIU Zengqian, ZHANG Zhefeng. Material Science Mechanism for Efficient Protection of Natural Armor[J]. 材料研究学报, 2022, 36(1): 1-7.
[7] SONG Xiaolong, LUO Weijing, NAN Yanli. A Review for Synthesis and Applications of Carbon Nanohorns[J]. 材料研究学报, 2021, 35(6): 401-410.
[8] ZHAO Wanli, SUO Hongli, LIU Min, MA Lin, DAI Yinming, ZHANG Zili. Research Progress in Preparation of MgB2 Bulk by Diffusion Method[J]. 材料研究学报, 2021, 35(6): 411-418.
[9] LANG Zhenqian, YE Zheng, YANG Jian, HUANG Jihua. Research Progress of Repair Technology for Surface Defects of Single Crystal Superalloy[J]. 材料研究学报, 2021, 35(3): 161-174.
[10] LI Zhuang, XU Qiujie, LIU Guojin, ZHANG Yunxiao, ZHOU Lan, SHAO Jianzhong. Structural Coloration of Photonic Crystals Based On Self-assembly of Colloid Microspheres[J]. 材料研究学报, 2021, 35(3): 175-183.
[11] YU Jianzhong, XV Xinling, YE Song. Research Progress on the Applications of Silver-loaded Zeolites[J]. 材料研究学报, 2021, 35(11): 801-810.
[12] HOU Zhiquan,GUO Meng,LIU Yuxi,DENG Jiguang,DAI Hongxing. Synthesis of Intermetallic Compounds and Their Catalytic Applications[J]. 材料研究学报, 2020, 34(2): 81-91.
[13] WU Qiaofeng, ZHANG Fu, YU Yue, ZHANG Meng, YU Hua, FAN Shuanshi. Research Progress on Stability of CsPbI2Br Inorganic Perovskite Solar Cells[J]. 材料研究学报, 2020, 34(11): 811-821.
[14] ZHOU Haitao, WANG Yanbo, XIAO Lu, SUN Jingli, XU Yuling, CHEN Ge. Research Status and Developing Trends of Preparation and Interface Control of Magnesium Matrix Composites with Carbon-containing Reinforcements[J]. 材料研究学报, 2020, 34(11): 801-810.
[15] LEI Xuanwei,ZHOU Shuanbao,HUANG Jihua. Current Status and Development Trend on Weldability of Ultra-high Strength Hull Structure Steel[J]. 材料研究学报, 2020, 34(1): 1-15.
No Suggested Reading articles found!