Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (5): 337-345    DOI: 10.11901/1005.3093.2014.495
Current Issue | Archive | Adv Search |
Proton Exchange Membrane Based on the Star Shaped Block Copolymer with Well Connected Ionic Domain and Conductivity
Jie ZHANG,Fang CHEN(),Xiaoyan MA(),Beirong SHANG,Kun SUN
The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and the Key Laboratory of Polymer Science and Technology, School of Natural and Applied Science, Northwestern Polytechnical University, 710129, Xi’an, China
Cite this article: 

Jie ZHANG,Fang CHEN,Xiaoyan MA,Beirong SHANG,Kun SUN. Proton Exchange Membrane Based on the Star Shaped Block Copolymer with Well Connected Ionic Domain and Conductivity. Chinese Journal of Materials Research, 2015, 29(5): 337-345.

Download:  HTML  PDF(3934KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Star shaped block copolymer POSS-(PMMA-b-PS)8 was synthesized by a two step process of atom transfer radical polymerization (ATRP) with eight functionalized polyhedral oligomeric silisesquioxane POSS-(Cl)8 as core and poly(methyl methacrylate-b-polystyrene) as arm. The POSS-(PMMA-b-PS)8 was then sulfonation treated to produce hybrid polymer POSS-(PMMA-b-SPS)8, which was finally used as the polymer matrix for making proton exchange membranes (PEMs). The examination of conductivity as function of relative humidity for PEMs of high and low hydration status respectively indicated that with longer SPS block length exhibited higher proton conductivity for the PEMs of low hydration status with the same λ i.e. the number of water molecular coupled to sulfonic acid groups. TGA analysis showed that two kinds of PEM all exhibited higher water retention capacity and higher initial decomposition temperature. A well-connected ionic domains in PEM with longer SPS block could be observed by transmission electron microscopy (TEM) and atomic force microscopy (AFM). The features of molecules motion of chain segments and spins relaxation time T2 for the PEMs of low hydration status were analyzed by low field nuclear magnetic resonance, and it is found that the well connected ionic domains could be observed also in the PEMs with longer SPS block, which exhibited higher proton spin-diffusion coefficient, therewith higher proton conductivity by low relative humidity.

Key words:  organic polymer materials      PEM      ATRP      star shaped block copolymer      POSS      microstructure     
Received:  13 September 2014     
Fund: *Supported by National Natural Science Foundation of China No. 51103117, National Natural Science Foundation of Shaanxi Province Nos. 2013JQ2010 & 2013JM2012, NPU Fundamental Research Foundation No. 3102014JCQ01089.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.495     OR     https://www.cjmr.org/EN/Y2015/V29/I5/337

Fig.1  Synthesis scheme of POSS-(PMMAm-b-SPSn)8
Fig.2  1H NMR spectra of POSS-(PMMAm-b-PSn)8a and POSS-(PMMAm-b-PSn)8b
Fig.3  GPC of POSS-(PMMAm-b-PSn)8
Block copolymer Mn Mw Mw/Mn m n PMMA(Mw) PS(Mw) IEC
POSS-(PMMAm-b-SPSn)8a 62000 151500 2.44 26 156 2730 16400 2.77
POSS-(PMMAm-b-SPSn)8b 98900 187900 1.90 16 200 1660 21000 3.85
Table 1  Molecular weight, distribution of molecular weight and ion exchange capacity for PEMs
Fig.4  Relationship between λ of membrane and humidity at 30℃
Fig.5  Relationship between proton conductivity(σ) of membrane and humidity in 30℃
Fig.6  Relationship between proton conductivity (σ) of POSS-(PMMAm-b-SPSn)8 and hydrated number (λ)
Fig.7  TGA curves of water retention and thermal stability of PEMs (a) TGA curves of hydrated state PEM from room temperature to 160℃; (b) thermal decomposition of performance of hydration PEMs after all as shown in Fig.7 (a) heated and colded to room temperature
Fig.8  TEM ofPOSS-(PMMA26-b-SPS156)8 (a) and POSS-(PMMA16-b-SPS200)8 (b)
Fig.9  AFM of POSS-(PMMA26-b-SPS156)8 (a) and POSS-(PMMA16-b-SPS200)8 (b)
Fig.10  Dotted line represents FIDs of two PEMs and solid line represent two-exponentially decaying fitting
Sample Rigid phase (SPS) Flexible phase( PMMA)
T2r/ms D(T2r)/nm2ms-1 M0r T2f/ms M0f M0
POSS-(PMMA26-b-SPS156)8 0.9 0.29 612.8 5.2 194.4 56.1
POSS-(PMMA16-b-SPS200)8 0.7 0.33 553.4 3.7 261.5 64.4
Table 2  Relaxation time (T2) of different phases of PEM and spin-diffusion coefficients (D(T2r)) for rigid phase (SPS)
1 H. Zhang, P. K. Shen,Recent development of polymer electrolyte membranes for fuel cells, Chemical Reviews, 112(5), 2780(2012)
2 C. H. Park, C. H. Lee, M. D. Guiver, Y. M. Lee,Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs), Progress in Polymer Science, 36(11), 1443(2011)
3 Y. A. Elabd, M. A. Hickner,Block copolymers for fuel cells, Macromolecules, 44(1), 1(2011)
4 F. Zhang, N. Li, S. Zhang,Preparation and characterization of sulfonated poly(arylene-co-naphthalimide)s for use as proton exchange membranes, Journal of Applied Polymer Science, 118(6), 3187(2010)
5 T. Gan, Q. Z. Jiang, H. J. Zhang, W. L. Wang, X. Z. Liao, Z. F. Ma,Study on the membrane electrode assembly fabrication with carbon supported cobalt triethylenetetramine as cathode catalyst for proton exchange membrane fuel cell, Journal of Power Sources, 196(4), 1899(2011)
6 T. Ous, C. Arcoumanis,Degradation aspects of water formation and transport in proton exchange membrane fuel cell: A review, Journal of Power Sources, 240, 558(2013)
7 S. Subianto, M. Pica, M. Casciola, P. Cojocaru, L. Merlo, G. Hards, D. J. Jones,Physical and chemical modification routes leading to improved mechanical properties of perfluorosulfonic acid membranes for PEM fuel cells, Journal of Power Sources, 233, 216(2013)
8 N. Takimoto, L. Wu, A. Ohira, Y. Takeoka, M. Rikukawa,Hydration behavior of perfluorinated and hydrocarbon-type proton exchange membranes: Relationship between morphology and proton conduction, Polymer, 50(2), 534(2009)
9 M. L. Einsla, Y. S. Kim, M. Hawley, H. S. Lee, J. E. McGrath, B. Liu, M. D. Guiver, B. S. Pivovar,Toward improved conductivity of sulfonated aromatic proton exchange membranes at low relative humidity, Chemistry of Materials, 20(17), 5636(2008)
10 T. B. Norsten, M. D. Guiver, J. Murphy, T. Astill, T. Navessin, S. Holdcroft, B. L. Frankamp, V. M. Rotello, J. Ding,Highly fluorinated comb-shaped copolymers as proton exchange membranes (PEMs): improving PEM properties through rational design, Advanced Functional Materials, 16(14), 1814(2006)
11 M. A. Kakimoto, S. J. Grunzinger, T. Hayakawa,Hyperbranched poly(ether sulfone)s: preparation and application to ion-exchange membranes, Polymer Journal, 42(9), 697(2010)
12 N. Li, C. Wang, S. Y. Lee, C. H. Park, Y. M. Lee, M. D. Guiver,Enhancement of proton transport by nanochannels in comb-shaped copoly(arylene ether sulfone)s, Angewandte Chemie International Edition, 50(39), 9158(2011)
13 K. S. Lee, M. H. Jeong, J. P. Lee, Y. J. Kim, J. S. Lee,Synthesis and characterization of highly fluorinated cross-linked aromatic polyethers for polymer electrolytes, Chemistry of Materials, 22(19), 5500(2010)
14 B. Decker, C. Hartmann-Thompson, P. I. Carver, S. E. Keinath, P. R. Santurri,Multilayer sulfonated polyhedral oligosilsesquioxane (S-POSS)-sulfonated polyphenylsulfone (S-PPSU) composite proton exchange membranes, Chemistry of Materials, 22(3), 942(2009)
15 X. Qiang, F. Chen, X. Y. Ma, X. B. Hou,Star shaped POSS-methacrylate copolymers with phenyl–triazole as terminal groups, Synthesis, and the pyrolysis analysis, Journal of Applied Polymer Science, 131, 40652(2014)
16 H. Tanaka, T. Nishi,Spin diffusion in block copolymers as studied by pulsed NMR, Physical Review B, 33(1), 32(1986)
17 H. W. Meyer, H. Schneider, K. Saalwachter,Proton NMR spin-diffusion studies of PS-PB block copolymers at low field: two- vs three-phase model and recalibration of spin-diffusion coefficients, Polymer Journal, 44(8), 748(2012)
18 L. Wang, C. Zhang, H. Cong, L. Li, S. Zheng, X. Li, J. Wang,Formation of nanophases in epoxy thermosets containing amphiphilic block copolymers with linear and star-like topologies, Journal of Physical Chemistry B, 117(27), 8256(2013)
19 X. C. Pang, L. Zhao, M. T. Akinc, J. K. Kim, Z. Q. Lin,Novel amphiphilic multi-arm, star-like block copolymers as unimolecular micelles, Macromolecules, 44, 3746(2011)
20 A. V. Anantaraman, C. L. Gardner,Studies on ion-exchange membranes, Part 1, Effect of humidity on the conductivity of Nafion?, Journal of Electroanalytical Chemistry, 414(2), 115(1996)
21 C. F. Lee,The properties of core–shell composite polymer latex, Effect of heating on the morphology and physical properties of PMMA/PS core–shell composite latex and the polymer blends, Polymer, 41, 1337(2000)
22 M. Okubo, N. Saito, R. Takekoh, H. Kobayashi,Morphology of polystyrene/polystyrene-block-poly(methyl methacrylate)/poly(methyl methacrylate) composite particles, Polymer, 46(4), 1151(2005)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[5] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[6] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[7] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[8] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[9] XIA Bo, WANG Bin, ZHANG Peng, LI Xiaowu, ZHANG Zhefeng. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels[J]. 材料研究学报, 2023, 37(5): 341-352.
[10] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
[11] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[12] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[13] ZHANG Ruixue, MA Yingjie, JIA Yandi, HUANG Sensen, LEI Jiafeng, QIU Jianke, WANG Ping, YANG Rui. Microstructure Evolution and Element Partitioning Behavior during Heat-treatment in Metastable β Titanium Alloy[J]. 材料研究学报, 2023, 37(3): 161-167.
[14] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[15] DONG Yu'ang, YANG Huajie, BEN Dandan, MA Yunrui, ZHOU Xianghai, WANG Bin, ZHANG Peng, ZHANG Zhefeng. Excellent Cryogenic Tensile Properties of Ultra-fine Grained 316L Stainless Steel after Electropulsing Treatment in Liquid Nitrogen[J]. 材料研究学报, 2023, 37(3): 168-174.
No Suggested Reading articles found!