Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (5): 359-364    DOI: 10.11901/1005.3093.2014.458
Current Issue | Archive | Adv Search |
Low-temperature Siliconizing of Silicon Steel Thin Strip with a Nanostructured Surface Layer and Effect of Treatment Parameter
Gang LIU1,**(),Chenggang MO1,Yuhui SHA2,Xiang ZHAO2,Liang ZUO2
1. Research Academy, Northeastern University, Shenyang 110819, China
2. Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education,
Northeastern University, Shenyang 110819, China
Cite this article: 

Gang LIU,Chenggang MO,Yuhui SHA,Xiang ZHAO,Liang ZUO. Low-temperature Siliconizing of Silicon Steel Thin Strip with a Nanostructured Surface Layer and Effect of Treatment Parameter. Chinese Journal of Materials Research, 2015, 29(5): 359-364.

Download:  HTML  PDF(1967KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Silicon steel thin strip was firstly surface shot peened, then cold rolled and finally siliconized by pack cementation process, The microstructural evolution was examined of the steel with the treatment processing. Results show that shot peening can induce the formation of noncrystalline (about 10nm in size) in the top surface layer, the grain size of the noncrystalline increases slightly after cold rolling. A compound layer can be obtained after siliconizing at 500oC in Si powder+halide on the shot peened and cold roll steel strip, its thickness increases with the increasing temperature and holding time, however on which the halide content exhibits little effect. After siliconizing at lower temperature the compound layer consists of single phase Fe3Si, and the increase of temperature, holding time and halide content is helpful for the formation of FeSi phase.

Key words:  metallic materials      silicon steel      shot peening      siliconizing      structure     
Received:  26 August 2014     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.458     OR     https://www.cjmr.org/EN/Y2015/V29/I5/359

Fig.1  TEM images and corresponding SAED of surface (a) and 20mm deep of the sample after SP (b)
Fig.2  TEM images and corresponding SAED of surface (a) and 20 mm deep of the sample after SP and CR (b)
Fig.3  Cross-sectional SEM observations of the SP+CR sample after the siliconizing in Si+5% halide at 500℃ for 4 h (a) and in Si+3% halide at 550℃ for 4 h (b), the insets show the Si distributions along the depth
Fig.4  XRD patterns of surface layer of original (a), SP (b) SP+CR (c) samples, and the SP+CR samples after siliconizing in Si+5% halide at 500℃ for 4 h (d) and in Si+3% halide at 550℃ for 4 h (e)
Fig.5  Effects of siliconizing parameters on the thickness of compound layer of the SP+CR samples (a) temperature , (b) duration and (c) content of halide (%, mass fraction)
Fig.6  Phase composition of the top surface layer of the SP+CR sample after siliconizing for different parameters
1 H. Haiji, K. Okada, T. Hiratani, M. Abe, M. Ninomiya,Magnetic properties and workability of 6.5% Si steel sheet, Journal of Magnetism and Magnetic Materials, 160, 109(1996)
2 Y. F. Liang, F. Ye, J.P. Lin, Y. L. Wang, G. L. Chen,Effect of annealing temperature on magnetic properties of cold rolled high sillcon steel thin sheet, Journal of Alloys and Compounds, 491, 268(2010)
3 T. P. P. Phway, A. J. Moses,Magnetostriction trend of non-oriented 6.5%Si-Fe, Journal of Magnetism and Magnetic Materia1s, 320, 611(2008)
4 T. Ros-Yá?ez, D. Ruiz, J. Barros, Y. Houbaert, R. Colás,Study of deformation and aging behaviour of iron-silicon alloys, Materials Science Engineering, A447, 27(2007)
5 B. Viala, J. Degauque, M. Fagot, M. Baricco, E. Ferrara, F. Fiorillo,Study of the brittle behaviour of annealed Fe-6.5wt Si ribbons produced by planar flow casting, Materials Science and Engineering, 212, 62(1996)
6 Y. Takada, M. Abe, S. Masuda, J. Inagaki,Commercial scale production of Fe-6.5wt.% Si sheet and its magnetic properties, Journal of Applied Physics, 64, 5367(1988)
7 T. Ros-Yá?ez, Y. Houbaert, V. G. Rodr?guez,High-silicon steel produced by hot dipping and diffusion annealing, Journal of Applied Physics, 91, 7857(2002)
8 LIN Junpin,YE Feng, CHEN Guoliang, WANG Yanli, LIANG Yongfeng, JIN Jinan, LIU Yan, Fabrication technology, microstructures and properties of Fe-6.5wt.%Si alloy sheets by cold rolling, Frontier Science, 2, 13(2007)
8 (林均品, 叶 丰, 陈国良, 王艳丽, 梁永锋, 金吉男, 刘 艳, 6.5Wt% Si高硅钢冷轧薄板制备工艺、织构和性能, 前沿科学, 2, 13(2007))
9 N. Tsuya, K. I. Arai,Magnetostriction of ribbon-form amorphous and crystalline ferromagnetic alloys, Journal of Applied Physics, 50, 1658(1979)
10 K. Kusaka, T. Imaoka, T. Kondo,Relationship between properties and Si-content sintering conditions of Fe-Si type magnetic alloys, Journal of the Japan Society of Powder and Powder Metallurgy, 47(2), 195(2000)
11 J. S. Shin, Z. H. Lee, T. D. Lee, E. J. Lavernia,The effect of casting method and heat treating condition on cold workability of high-Si electrical steel, Scripta Materialia., 45, 725(2001)
12 S. C. Combe, S. Audisio, J. Degauque, J. L. Porteseil, E. Ferrara, M. Pasquale, F. Fiorillo,The magnetic properties of Fe-Si 6.5wt% alloys obtained by a SiCl4-based CVD process, Journal Magnetism and Magnetic Materials, 160, 151(1996)
13 K. Lu, J. Lu,Nanostructured surface layer on metallic materials induced by surface mechanical attrition, Materials Science Engineering, A375, 38(2004)
14 W. P. Tong, N. R. Tao, Z. B. Wang, J. Lu, K. Lu,Nitriding iron at lower temperatures, Science, 289, 686(2003)
15 W. P. Tong, Z. Han, L. M. Wang, J. Lu, K. Lu,Low-temperature nitriding of 38CrMoAl steel with a nanostructured surface layer induced by surface mechanical attrition treatment, Surface & Coatings Technology, 202, 4957(2008)
16 Z. B. Wang, N. R. Tao, W. P. Tong, J. Lu, K. Lu,Defusion of chromium in nanocrystalline iron produced by means of surface mechanical attrition treatment, Acta Materialia, 51, 4319(2003)
17 MO Chenggang,LIU Gang, HUANG Pu, ZUO Liang, Siliconizing behavior in surface nanostructure of non-grain oriented silicon steel, Iron and Steel, 47(3), 65(2012)
17 (莫成刚, 刘 刚, 黄 璞, 左 良, 无取向硅钢表面纳米结构的渗硅行为, 钢铁, 47(3), 65(2012))
18 N. R. Tao, Z. B. Wang, W. P. Tong, M. L. Sui, J. Lu, K. Lu,An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment, Acta Materialia, 50, 4603(2002)
19 WANG Aixiang,LIU Gang, ZHOU Lei, WANG Ke, YANG Xiaohua, LI Ying, Thermal stability of structure and hardness of the surface layer of 316L stainless steel after surface mechanical attrition treatment, Acta Metallurgica Sinica, 41(6), 577(2005)
19 (王爱香, 刘 刚, 周 蕾, 王 科, 杨晓华, 李 瑛, 表面机械研磨处理316L不锈钢表层结构及硬度的热稳定性, 金属学报, 41(6), 577(2005))
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!