Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (1): 60-66    DOI: 10.11901/1005.3093.2014.457
Current Issue | Archive | Adv Search |
Corrosion Behavior of Pure Copper in Simulated Acid Rain of Different pH
Wanli ZHONG1(),Ming NIE1,Yongchun LIANG1,Yuantai MA2,**,Ying LI2
1. Electric Power Research Institute of Guangdong Power Grid Corporation, Guangzhou 51000, China
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Wanli ZHONG,Ming NIE,Yongchun LIANG,Yuantai MA,Ying LI. Corrosion Behavior of Pure Copper in Simulated Acid Rain of Different pH. Chinese Journal of Materials Research, 2015, 29(1): 60-66.

Download:  HTML  PDF(3474KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of pure copper in simulated acid rain of different pH was investigated by using electrochemistry impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) as well as SEM. The results show that the impedances of pure copper in simulated acid rain of different pH present various characteristic, indicating the different corrosion mechanisms. The results of XPS show that cuprous oxide only form on the surface of pure copper in pH=3 solution and cupric oxide only exist in pH=5 solution as well as the mixture of both oxides appear in pH=6 solution. The diffusion of O2 and H+ through solution may influence the corrosion process of pure copper. In low pH solution, the diffusion of dissolved oxygen through double electric layer is the rate-controlling step due to the promotion of the hydrogen ion. With increase of pH value, the oxygen of depolarization effect mainly control the corrosion process of pure copper without the effect of hydrogen ion.

Key words:  metalic materials      materials failure and protection      pure copper      acid rain      corrosion      diffusion     
Received:  06 May 2014     
Fund: *Supported by Guangdong Power Grid Corporation No.K-GD2013-0498002-001.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.457     OR     https://www.cjmr.org/EN/Y2015/V29/I1/60

Fig.1  Impedance spectroscopy of pure copper in simulated acid rain of pH=3 (a) Nyquist plot, (b) Bode plot
Fig.2  Impedance spectroscopy of pure copper in simulated acid rain of pH=5 (a) Nyquist plot, (b) Bode plot
Fig.3  Impedance spectroscopy of pure copper in simulated acid rain of pH=6: (a) Nyquist plot; (b) Bode plot
Time Rs Qc n1 Rct W Qf n2 Rf
(h) (Ωcm2) (106 Fcm-2) (Ωcm2) (Ωcm2) (106 Fcm-2) (Ω·cm2)
1 34.1 60 0.67 749 0.01625 - - -
5 33.2 79 0.67 451 0.01434 - - -
25 28.1 180 0.61 19 0.03049 6700 0.75 71
50 29.8 130 0.61 10 0.02912 4700 0.84 84
75 27.0 220 0.59 7.6 0.02898 4300 0.78 93
Table 1  Fitting results of EIS in pH=3 solutions
Time Rs Qc n1 Rct W Qf n2 Rf
(h) (Ωcm2) (106 Fcm-2) (Ωcm2) (Ωcm2) (106 Fcm-2) (Ω·cm2)
1 33.5 22 0.75 2623 0.0086 - - -
5 33.7 23 0.75 2418 0.0011 - - -
25 34.3 23 0.71 736 - 130 0.77 14000
50 35.6 44 0.59 762 - 140 0.72 15200
75 36.1 89 0.59 1982 - 110 0.65 15000
Table 2  Fitting results of EIS in pH=5 solutions
Time Rs Qc n1 Rct Qf n2 Rf
(h) (Ωcm2) (106 Fcm-2) (Ωcm2) (106 Fcm-2) (Ω·cm2)
1 32.0 19 0.72 6615 78 0.75 22000
5 32.2 7.2 0.79 8142 24 0.85 33000
25 32.5 6.2 0.86 1600 46 0.90 25000
50 32.1 6.9 0.76 5674 85 0.88 25000
75 32.3 9.1 0.75 7769 59 0.87 38000
Table 3  Fitting results of EIS for pH=6 solutions
Fig.4  Equivalent circuits for EIS in Fig.1-3
Fig.5  Cu2p XPS of copper oxide film on surface of pure copper in different time exposed to simulated acid rain (a) 25 h, (b) 75 h
Fig.6  CuLMM Auger spectra of pure copper in different time exposed to simulated acid rain
Fig.7  MicrograpHs for copper surfaces exposed to simulated acid rain of pH=3 during of various period (a) 25 h, (b) 50 h, (c) 75 h
Fig.8  Micrographs for copper surfaces exposed to simulated acid rain of pH=5 during of various period (a) 25 h, (b) 50 h, (c) 75 h
1 Wong D K Y,Coller B A W, MacFarlane D R. A kinetic model for the dissolution mechanism of copper in acid sulfate solutions, Electrochimical, Acta, 38, 2121(1993)
2 Y. Feng, W. K. Teo, K. S. Siow, G. L. Tan, A. K. Hsieh,The corrosion behavior of copper in neutral tap water. Part I: Corrosion mechanism, Corrosion Science, 38, 369(1996)
3 Y. Feng, K. S. Siow, W. K. Teo, G. L. Tan, A. K. Hsieh,Corrosion mechanisms and products of copper in aqueous solutions at various pH values, Corrosion, 53, 389(1997)
4 Xu Guo,Wu Yan, Present situation and major ions in acid rain in Guangzhou, Guangdong Chemical Industry, 32, 190(2010)
4 (许 国, 吴 艳, 广州市酸雨现状及离子组成特征分析, 广东化工, 37, 190(2010))
5 Li Xiaoli,Xie Fangyan, Gong Li, Zhang Weihong, Yu Xiaolong, Chen Jian, Effect of argon ion bombardment on copper oxide studied by x-ray photoelectron spectroscopy, Journal of Instrument Analysis, 32, 535(2013)
5 (李晓莉, 谢方艳, 龚 力, 张卫红, 于小龙, 陈建, 氩离子刻蚀还原氧化铜的XPS研究, 分析测试学报, 32, 535(2013))
6 An B G,Zhang X Y, Han E H, Corrosion behavior of pure copper during initial exposure stage in atmosp here of Shenyang city, Acta Metall. Sin., 43, 77(2007)
6 (安百刚, 张学元, 韩恩厚, 沈阳大气环境下纯铜的初期腐蚀行为, 金属学报, 43, 77(2007))
7 Zhang X Y,An B G, Han E H, Corrosion behavior of copper in simulated rain water, Corrosion Science and Protection Technology, 14, 257(2002)
7 (张学元, 安百刚, 韩恩厚, 铜在雨水中的腐蚀行为电化学研究, 腐蚀科学与防护技术, 14, 257(2002))
[1] JIANG Menglei, DAI Binbin, CHEN Liang, LIU Hui, MIN Shiling, YANG Fan, HOU Juan. Effect of Building Dimensions by Selective Laser Melting on Pitting Properties of 304L Stainless Steel[J]. 材料研究学报, 2023, 37(5): 353-361.
[2] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
[3] YANG Baolei, LIU Tingguang, SU Xianglin, FAN Yu, QIU Liang, LU Yonghao. Effect of Thermal Aging on Mechanical Properties and Intergranular Corrosion Resistance of 316LN[J]. 材料研究学报, 2023, 37(5): 381-390.
[4] LI Pengyu, LIU Zitong, KANG Shumei, CHEN Shanshan. Effect of Plasma Treatment on Performance of Polybutylene Adipate Coating on Biomedical AZ31 Mg-alloy[J]. 材料研究学报, 2023, 37(4): 271-280.
[5] LIAO Hongyu, JIA Yongxin, SU Ruiming, LI Guanglong, QU Yingdong, LI Rongde. Effect of Retrogression Times on Microstructure and Corrosion Resistance of 2024 Aluminum Alloy[J]. 材料研究学报, 2023, 37(4): 264-270.
[6] CHEN Jie, LI Hongying, ZHOU Wenhao, ZHANG Qingxue, TANG Wei, LIU Dan. Effect of Heat Input on Low Temperature Toughness and Corrosion Resistance of Q1100 Steel Welded Joints[J]. 材料研究学报, 2022, 36(8): 617-627.
[7] CAI Yusheng, HAN Hongzhi, REN Dechun, JI Haibin, LEI Jiafeng. Effect of Chemical Etching Process on Surface Roughness of TC4 Ti-alloy Fabricated by Laser Selective Melting[J]. 材料研究学报, 2022, 36(6): 435-442.
[8] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[9] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[10] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[11] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[12] SONG Jianyu, LI Xiang, WANG Qian, SHEN Longhai, QI Dongli, FENG Yu, CHEN Jianjin. Effect of Magnetic Field Direction on Suede Structure of Alkaline Solution Corroded Polysilicon[J]. 材料研究学报, 2021, 35(9): 682-688.
[13] LI Lingmei, HUANG Huizhen, ZHANG Qinghuan, SHUAI Gewang. Effect of P on Properties of Sn-9Zn-0.1S Lead-Free Solder[J]. 材料研究学报, 2021, 35(8): 615-622.
[14] WANG Gen, LI Xinmei, LU Caibin, WANG Songchen, CHAI Cheng. Preparation and Properties of CoCuFeNiTi High Entropy Alloy Coating[J]. 材料研究学报, 2021, 35(8): 561-571.
[15] LI Ningning, CHEN Yang, CHEN Xi, YIN Liying, CHEN Guang. Preparation Method and Diffusion Mechanism of Fe-Al Coating on Q235 Low Carbon Steel by Pack Aluminizing[J]. 材料研究学报, 2021, 35(8): 572-582.
No Suggested Reading articles found!