Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (1): 51-54    DOI: 10.11901/1005.3093.2014.333
Current Issue | Archive | Adv Search |
Electronic Properties of Amorphous Indium-gallium-zinc Oxide Thin Film Fabricated by Magnetron Sputtering
Mingjie CAO,Ming ZHAO,Daming ZHUANG(),Li GUO,Liangqi OUYANG,Xiaolong LI,Jun SONG
Key Lab of Advanced Processing and Manufacturing, Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Cite this article: 

Mingjie CAO,Ming ZHAO,Daming ZHUANG,Li GUO,Liangqi OUYANG,Xiaolong LI,Jun SONG. Electronic Properties of Amorphous Indium-gallium-zinc Oxide Thin Film Fabricated by Magnetron Sputtering. Chinese Journal of Materials Research, 2015, 29(1): 51-54.

Download:  HTML  PDF(675KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Amorphous indium-gallium-zinc oxide (a-IGZO) thin films were fabricated using mid-frequency AC magnetron sputtering deposition with variable oxygen flow rate and sputtering current. The influence of processing parameters on the electronic properties of the films was investigated by means of analyses of XRD and XRF, as well as Hall Effect measurement. The results show that all the samples are amorphous with compositions roughly equal to that of the target. The change of sputtering current had no significant effect on the electronic properties. But the carrier concentration of the samples exhibited an obvious change as the increase of the O2 flow rate, which slightly increased and then rapidly decreased. The samples with higher carrier concentration exhibited larger Hall mobility. The average transmission of the IGZO thin films deposited with large O2 flow rate is above 90%.

Key words:  inorganic non-metallic materials      IGZO thin film      amorphous semiconductors      magnetron sputtering      mobility     
Received:  08 July 2014     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.333     OR     https://www.cjmr.org/EN/Y2015/V29/I1/51

Sputtering current /A In Ga Zn
0.50 34.58 39.09 26.34
0.75 33.87 37.91 28.22
1.00 30.23 38.64 31.13
1.50 28.69 37.83 33.48
Table1  Compositions of films deposited under different sputtering current (%, atomic ratios)
Fig.1  Resistivity and carrier concentration of IGZO films deposited under different sputtering current
Fig.2  X-ray diffraction patterns of a-IGZO films (sputtering current, (a) 0.5 A, (b) 1 A, (c) 2 A)
Fig.3  Dependence of resistivity and carrier concentration on oxygen flow rate
Fig.4  Relationship between Hall mobility and carrier concentration
Fig.5  The influence of oxygen flow rate on the transmission of IGZO films
1 Kamiya T,Nomura K, Hosono H, Present status of amorphous In-Ga-Zn-O thin-film transistors, Science and Technology of Advanced Materials, 11(4), 44305(2010)
2 Nomura K,Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature, 432(7016), 488(2004)
3 Yabuta H,Sano M, Abe K, Aiba T, Den T, Kumomi H, Nomura K, Kamiya T, Hosono H, High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering, Applied Physics Letters, 89, 112123(2006)
4 Kamiya T,Nomura K, Hosono H, Origins of high mobility and low operation voltage of amorphous oxide TFTs: electronic structure, electron transport, defects and doping, Journal of Display Technology, 5(7), 273(2009)
5 Park J S,Maeng W, Kim H, Park J, Review of recent developments in amorphous oxide semiconductor thin-film transistor devices, Thin Solid Films, 520(6), 1679(2012)
6 CHEN Jiangbo,Investigation on fabrication and properties of InGaZnO thin films by pulsed laser deposition, Ph D thesis, Beijing, Beijing University of Technology (2012)
6 (陈江博,PLD制备InGaZnO 薄膜及其物理性质研究,博士学位论文,北京, 北京工业大学(2012))
7 Suresh A,Gollakota P, Wellenius P, Dhawan A, Muth J F, Transparent, high mobility InGaZnO thin films deposited by PLD, Thin Solid Films, 516(7), 1326(2008)
8 Hsu H H,Chang C Y, Cheng C H, Room-temperature flexible thin film transistor with high mobility, Current Applied Physics, 13(7), 1459(2013)
9 Fung T,Abe K, Kumomi H, Kanicki J, Electrical instability of RF sputter amorphous In-Ga-Zn-O thin-film transistors, Journal of Display Technology, 5(12), 452(2009)
10 Jun-Young H,Jae-Hong J, Hee-Hwan C, Kang-Woong L, Jong-Huyn S, Min-Ki R, Sang-Hee K P, Chi-Sun H, Woo-Seok C, Effects of the composition of sputtering target on the stability of InGaZnO thin film transistor, Thin Solid Films, 519(20), 6868(2011)
11 Kim G H,Du Ahn B, Shin H S, Jeong W H, Kim H J, Kim H J, Effect of Indium composition ratio on solution-processed nanocrystalline InGaZnO thin film transistors, Applied Physics Letters, 94, 233501(2009)
12 Tsay C Y,Yan T Y, Solution processed amorphous InGaZnO semiconductor thin films and transistors, Journal of Physics And Chemistry of Solids, 75(1), 142(2014)
13 Pu H F,Zhou Q F, Yue L, Zhang Q, Solution-processed Indium Gallium Zinc oxide thin-film transistors with infrared irradiation annealing, Semiconductor Science and Technology, 28(10), 105002(2013)
14 Nomura K,Takagi A, Kamiya T, Ohta H, Hirano M, Hosono H, Amorphous oxide semiconductors for high-performance flexible thin-film transistors, Japanese Journal of Applied Physics, 45(5B), 4303(2006)
15 Kagan C R, Andry P, WANG Jun, LIAO Yanping, Thin-Film Transistors (Beijing, Publishing House of Electronics Industry, 2008) p. 190
15 (Kagan Cherie R., Andry Paul 编, 王 军, 廖燕平译, 薄膜晶体管 (TFT)及其在平板显示中的应用 (北京,电子工业出版社, 2008) p. 190)
16 Takagi A,Nomura K, Ohta H, Yanagi H, Kamiya T, Hirano M, Hosono H, Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4, Thin Solid Films, 486(1-2), 38(2005)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[9] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[13] ZHANG Peng, HUANG Dong, ZHANG Fuquan, YE Chong, WU Xiao, WU Huang. Effect of Graphitization Degree of Mesophase Pitch-based Carbon Fibers on Carbon Fiber/Al Interface Damage[J]. 材料研究学报, 2022, 36(8): 579-590.
[14] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[15] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
No Suggested Reading articles found!