Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (12): 895-900    DOI: 10.11901/1005.3093.2014.308
Current Issue | Archive | Adv Search |
Oxidation Behavior of GH3535 Superalloy at 700℃ and 900℃
Tao LIU1,2,Jiasheng DONG2,**(),Hui LI2,Zhijun LI3,Xingtai ZHOU3,Langhong LOU2
1. Dalian University of Technology, Dalian 116024
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
3. Shanghai Institute of Applied Physics, Chinese Academy of Sciences 201800
Cite this article: 

Tao LIU,Jiasheng DONG,Hui LI,Zhijun LI,Xingtai ZHOU,Langhong LOU. Oxidation Behavior of GH3535 Superalloy at 700℃ and 900℃. Chinese Journal of Materials Research, 2014, 28(12): 895-900.

Download:  HTML  PDF(7125KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The isothermal and cyclic oxidation behavior of GH3535 superalloy in air at 700oC and 900oC were investigated by using TGA method. The results show that GH3535 alloy has a good oxidation resistance to isothermal oxidation at 700℃and 900℃. But the alloy shows a worse resistance to cyclic oxidization, especially when cyclic oxidation at 900 oC the alloy suffered from accelerated oxidation with rather severe spallation of oxide scales. The X-ray and EDS analysis show that the formed oxide scale consists mainly of Cr2O3, NiMn2O4 and FeCr2O4 during isothermal oxidation. However, oxide products such as MoO2, NiFe2O4, NiCr2O4, NiMn2O4, and NiMoO4 can be detected after cyclic oxidation. The oxidation resistance of the alloy decrease noticeably because of the cracking and spallation of the protective oxide scale as well as the continuous participant of Mo in the oxidation process.

Key words:  metallic materials      GH3535      nickel-based superalloy      high temperature oxidation      oxidation kinetics     
Received:  29 June 2014     
Fund: *Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences No. XDA020404040.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.308     OR     https://www.cjmr.org/EN/Y2014/V28/I12/895

Elements Mo Cr Fe C Si Mn Ti+Al+Ta Ni
Content 16 7 4 0.04 0.4 0.5 <2 Bal.
Table 1  Nominal composition of the experimental alloy (%, mass fraction)
Fig.1  Isothermal and cyclic oxidation kinetics curves of GH3535 at 700℃ and 900℃: (a) oxidation velocity curve and (b) oxidation mass gain curve
Fig.2  X-ray diffraction spectrum obtained from the alloy surface after isothermal and cyclic oxidation of 500 h at 700℃ and 900℃ (a) isothermal oxidization at 700℃, (b) isothermal oxidization at 900℃, (c) cyclic oxidation at 700℃, (d) cyclic oxidation at 900℃, (e) peeling scale of cyclic oxidation at 900℃
Fig.3  Cross-section morphology and element distribution of the specimen after isothermal oxidation at 700℃ for 500 h
Fig.4  Cross-section morphology and element distribution of the specimen after isothermal oxidation at 900℃ for 500 h
Fig.5  Cross-section morphologies and element distribution of the specimen after cyclic oxidation at 700℃ for 500 h
Fig.6  Cross-section morphology and element distribution of the specimen after cyclic oxidation at 900℃ for 500 h
1 M. W. Rosenthal, P. R. Kasten, R. B. Briggs,Molten-salt reactors-history, status, and potential, Nuclear Applications and Technology, 8, 107(1970)
2 U. S. DOE Nuclear Energy Research Advisory Committeethe Generation IV International Forum: Molten Salt Reactor System R&D,GIF-002-00, 33(2002)
3 R. C. Robertson,Description of reactor design, ORNL-TM-0728, 9 (1965)
4 H. E. McCoy, J. R. Weir,Materials development for molten-salt breeder reactors, ORNL-TM-1854, 3(1967)
5 H. E. McCoy, J. R. Weir,Materials development for molten-salt breeder reactors, ORNL-TM-1854, 31(1967)
6 J. W. Koger,Evaluation of hastelloy N alloys after nine years exposure to both a molten fluoride salt and air at temperatures from 700 to 560℃, ORNL-TM-4189, 19(1972)
7 E. L. Youngblood, R. P. Milford, R.G. Nicol, J. B. Ruch,Corrosion of the volatility pilot plant INOR-8 hydrofluorinator and nickel 201 fluorinator during forty fuel-processing runs with zirconium-uranium alloy, ORNL-3623, 20(1965)
8 H. E. McCoy, B. McNabb,Intergranular cracking of INOR-8 in the MSRE, ORNL-4829, 79(1972)
9 T. K. Roche,The influence of composition upon the 1500oF creep-rupture strength and microstructure of molybdenum-chromium-iron-nickel base alloys, ORNL-2524, 1(1958)
10 R. E. Gehlbach, H. E. McCoy,Phase instability in Hastelloy N, International Symposium on Structural Stability in Superalloys, 2, 346(1968)
11 LI Meishuan, High Temperature Corrosion of Metal, 1st Edition, (Beijing, Metallurgy Industry Press, 2001)p.42
11 ( 42)
12 GUO Jianting, Materials Science and Engineering for Superalloys, 1st Edition, (Beijing, Science Press, 2008) p. 582
12 (582)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!