Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (6): 476-480    DOI: 10.11901/1005.3093.2013.764
Current Issue | Archive | Adv Search |
Influence of Solidification Rate on Pore Structure of Lotus-type Porous Metals
Yugeng LI,Qinglin JIN(),Tianwu YANG,Zaijiu LI
School of Material Science and Engineering Kunming University of Sciences and Technology, Kunming 650000
Cite this article: 

Yugeng LI,Qinglin JIN,Tianwu YANG,Zaijiu LI. Influence of Solidification Rate on Pore Structure of Lotus-type Porous Metals. Chinese Journal of Materials Research, 2014, 28(6): 476-480.

Download:  HTML  PDF(2855KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Lotus-type porous Cu, Mg and Ni were fabricated by a mould casting technique in hydrogen gas atmosphere. The effect of solidification rate on the structure of the lotus type porous metals was comparatively investigated by theoretical calculation and experiments. The results show that the increase of bubble radius results in an increase of bubble rising velocity for Cu, Mg and Ni. A suitable ordered porous structure can be obtained only when the maximum solidification rate is in the range of bubble rising velocity.

Key words:  metallic materials      Gasar      lotus-type metals      unidirectional solidification      solidification rate      pore structure     
Received:  16 October 2013     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.764     OR     https://www.cjmr.org/EN/Y2014/V28/I6/476

Fig.1  Gas escape from melt at unidirectional solidification
Fig.2  A schematic diagram for ideal lotus type porous structure
Physical quantity Symbol (unit) Cu Mg Ni
Melting point Tm(K) 1356 922 1756
Cooling temperature T0(K) 298 373 298
Interfacial energy slg[16](J/m2) 1.31 0.57 1.75
Solute distribution constant k 0.35[17] 0.69[17] 0.41[18]
Diffusion coefficient D H [19] (mm2/s) D H C u =0.512exp (-24600/RTm) D H M g =0.87exp (-29820/RTm) D H N i =0.77exp (-7436/RTm)
Viscosity η[20] (mPas) 4.0 1.25 4.5
Table 1  Parameters of material for calculation
Fig.3  Schematic illustration of the fabrication apparatus for ordered porous metals (1-Inlet and outlet of cooling water, 2-Copper chiller, 3-Crucible, 4-Funnel, 5-Chamber, 6-Induction-heating coils, 7-Molten material, 8-Control bar, 9-Observation window, 10-Pressure gage, 11-Inlet and outlet of gases)
Sample No. Material porosity ε(%) Sample height S(m)
1 Cu 53.6 0.18
2 Mg 44 0.14
3 Ni 10 0.5
Table 2  Experimental results
Fig.4  Cross section (a-c) and vertical section (d-f) of Cu (a, d) Mg (b, e) and Ni (c, f)
Fig.5  Results of the bubble rising velocity against the bubble diameter calculated by the Stokes′law and metal solidification rate maximum of Cu Mg and Ni
1 Shapovalov V I,Method of manufacture of Porous Articles, U.S, Patent No. 5181549, (1993)
2 Provenzano V,Wolla J M, Matic P, Microstructural analysis and computer simulation of Gasar porous copper, MRS Symposium, Proceedings, San Francisco, California, (1995)
3 Kovacik J,The tensile behavior of porous metals made by GASAR process, Acta Materialia, 46(15), 5413(1998)
4 Hyun S K,Murakami K, Nakajima H, Anisotropic mechanical properties of porous copper fabricated by unidirectional solidification, Mater. Sci Eng A, 299, 241(2001)
5 Walukas D M,Gasar materials: A novel approach in the fabrication of porous materials, Dmk Tek Inc, Ann Arbor, MI, (1992)
6 YANG Xuejuan,LIU Ying, Preparation and application of the porous metal material, Materials Review, 21(4), 380(2007)
6 (杨雪娟, 刘 颖, 多孔金属材料的制备及应用, 材料导报, 21(4), 380(2007))
7 YANG Yazheng,YANG Jialing, Progress in research work of light materials, Chinese Quarterly of Mechanics, 28(4), 503(2007)
7 (杨亚政, 杨嘉陵, 轻质多孔材料研究进展, 力学季刊, 28(4), 503(2007))
8 ZHANG Huawei,LI Yanxiang, LIU Yuan, Study of Metal--Hydrogen Binary Phase Diagram in Gasar Process, Acta Metall Sin, 41(1), 55(2005)
8 (张华伟, 李言祥, 刘 源, Gasar工艺中金属-氢二元相图的研究, 金属学报, 41(1), 55(2005))
9 Hyun S K,Nakajima H, Effect of solidification velocity on pore morphology of lotus-type porous copper fabricated by unidirectional solidification, Materials Letters, 57, 3149(2003)
10 Szekely J, Fluid Flow Phenomena in Metals Processing, Newyork: Academic Press, 323(1979)
11 ZHU Miaoyong, XIAO Zeqiang, Mathematical Physics Simulation of the Refining Process of the Steel (Beijing, Metallurgical industry press, 1998)p.35
11 (朱苗勇, 萧泽强, 钢的精炼过程数学物理模拟 (北京: 冶金工业出版社, 1998)p.35)
12 HAN Qiyong, Metallurgical Process Dynamics (Beijing, Metallurgical industry press, 1983) p.170
12 (韩其勇, 冶金过程动力学 (北京: 冶金工业出版社, 1983) p.170)
13 LIU Y,LI Y X, Scr Mater, 49, 379(2003)
14 R WARREN,Solid-liquid interfacial energies in binary and pseudo-binary systems, J. Mater. Sci, 15, 2489(1980)
15 W. R. Tyson, W. A. Miler, Surface Science, 62, 267(1997)
16 B C Allen,Liquid Metals-Chem and Phys, Dekker New York, 186(1972)
17 AN Yingge, The Theory of Casting Forming (Beijing, China Machine Press, 1990)p.173
17 (安阁英, 铸件形成理论 (北京: 机械工程出版社, 1990)p.173)
18 ZHANG Huawei,LI Yanxiang, LIU Yuan, Hydrogen solubility in pure metals for gasar process, Acta Metall Sin, 43(2), 117(2007)
18 (张华伟, 李言祥, 刘 源, 氢在Gasar工艺常用纯金属中的溶解度, 金属学报, 43(2), 117(2007))
19 Fish D J,Hydrogen Diffusion in Matels: A 30-Year Retrospective, Switzerland: Science Publications Ltd, 1-173(1999)
20 Erandes E A,Brook G B, Smithells Metals Reference Book, 7th ed. Boston: Butterworth Heinemann, 12-5~14-13(1992)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!