Please wait a minute...
Chinese Journal of Materials Research  2012, Vol. 26 Issue (6): 590-596    DOI:
Current Issue | Archive | Adv Search |
Preparation of Ti by Direct Electrochemical Deoxidation in Low Temperature Molten Salt
LIAO Xianjie, ZHAI Yuchun, XIE Hongwei, SHEN Hongtao, ZHOU Xiangyu
The Materials and Metallurgical School of Northeastern University, Shenyang 110819
Cite this article: 

LIAO Xianjie ZHAI Yuchun XIE Hongwei SHEN Hongtao ZHOU Xiangyu. Preparation of Ti by Direct Electrochemical Deoxidation in Low Temperature Molten Salt. Chinese Journal of Materials Research, 2012, 26(6): 590-596.

Download:  PDF(1127KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The method of electro–deoxidation in molten salts was adopted to to prepare Ti with unsintered TiO2 powder loaded in the graphite capsule, and the graphite crucible was used as electrolytic cell at 800oC . In this paper, different electro–deoxidation time were taken as to analyse the cathode products. During the CV experiment, the graphite and molybdenum was individually used as the work electrode material, counter electrode material and reference electrode material for the Studies on Kinetics
of TiO2 reduction and the CV curves were recorded by AutoLab PGSTAT 320 N potentiostat. Result showed that metal Ti was gotted with unsintered TiO2 powder as raw material after 40 h constant voltage electrolysis, and graphite electrode was not a good choice to used as electrode material in the CV experiment at high temperature for its high electrode activity and large surface area, although there were a wide electrochemical window potential, while the molybdenum was quite an ideal choice for its stable electrochemical properties. The TiO2 electrochemical reduction steps contain four steps: TiO2/Ti3O5, Ti3O5/Ti2O3, CaTi2O4/TiO, TiO/T during the former two steps CaTiO3 and CaTi2O4 spontaneously formed.

Key words:  metallic materials      electric deoxidation      molten salt      cyclic voltammetry     
Received:  15 February 2012     
ZTFLH:  TF111  
Fund: 

Supported by National Natural Science Foundation of China No.50674026.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2012/V26/I6/590

1 Shaohuai Gao H D A Z, Journal of Wuhan University of Technology–Materials Science Edition Infl uence of Abutment Material on the Stress of Implant–supported All–ceramic Single Crown, Journal of Wuhan University of Technology–Materials Science Edition, 27(1), 96(2012)

2 SONG Xiping, Titanium alloy Application Status and R&D trends in car parts, Titanium Industry Progress, (05)(2007)

(宋西平, 钛合金在汽车零件上的应用现状及研发趋势, 钛工业进展, (05)(2007))

3 Sato K, Santosh M, Titanium in quartz as a record of ultrahigh–temperature metamorphism: the granulites of Karur, southern India, Mineralogical Magazine, 71(2), 143(2007)

4 Daniel Eylon K O Y, Titanium– First Six Decades:Past, Present and Future[J]. Rare Metal Materials and Engineering, (35), 1(2006)

5 Tulugan K, Park C, Qing W, Park W, Composition design and mechanical properties of BCC Ti solid solution alloys with low Young’s modulus, Journal of Mechanical Science and Technology, 26(2), 373(2012)

6 Froes F, Titanium and other light metals: Let’s do something about cost, JOM Journal of the Minerals, Metals and Materials Society, 50(9), 15(1998)

7 Hayes F H, Advances in Titanium Extractive Metallurgy, FHH1–Tech 49/2, (April)(1984).

8 Ono K, Fundamental aspects of calciothermic process to produce titanium, Materials Transactions, 45(5), 1660(2004)

9 Suzuki R O, Aizawa M, Ono K, Calcium–deoxidation of niobium and titanium in Ca–saturated CaCl2 molten salt, Journal of Alloys and Compounds, 288(1–2), 173(1999)

10 Suzuki R O, Direct reduction processes for titanium oxide in molten salt, JOM, 59(1), 68(2007)

11 Baba M, Ono Y, Suzuki R O, Tantalum and niobium powder preparation from their oxides by calciothermic reduction in the molten CaCl2, 66(2–4), 466(2005)

12 Okabe T H, Park I, Jacob K T, Waseda Y, Production of niobium powder by electronically mediated reaction (EMR) using calcium as a reductant, Journal Of Alloys And Compounds, 288(1–2), 200(1999)

13 Le P F, Grobner O, Laurent J M, Electron stimulated molecular desorption of a non–evaporable Zr–V–Fe alloy getter at room temperature, Nuclear Instruments & Methods In Physics Research Section B–Beam Interactions With Materials And Atoms, 194(4), 434(2002)

14 Bhagat R, Jackson M, Inman D, Dashwood R, Production of Ti–W Alloys from Mixed Oxide Precursors via the FFC Cambridge Process, Journal of the electrochemical society, 156(1), E1(2009)

15 Schwandt C, Fray D J, The Electrochemical Reduction of Chromium Sesquioxide in Molten Calcium Chloride under Cathodic Potential Control , Zeitschrift f¨ur Naturforschung A, 62, 655(2007)

16 Withers J C, Loutfy R O, Thermal and electrochemical process for metal production [P]. url. 

17 Ye X S, Lu X G, Li C H, Ding W Z, Zou X L, Gao Y H, Zhong Q D, Preparation of Ti—-Fe based hydrogen storage alloy by SOM method, 36(7), 4573(2011)

18 Zou X, Lu X, Zhou Z, Li C, Ding W, Direct selective extraction of titanium silicide Ti5Si3 from multi–component Ti–bearing compounds in molten salt by an electrochemical process, 56(24), 8430(2011)

19 Cho S, Hur J, Seo C, Yoon J, Park S, Hot corrosion behavior of Ni–base alloys in a molten salt under an oxidizing atmosphere, 468(1-2), 263(2009)

20 Chen G Z, Fray D J, Farthing T W, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature, 407(6802), 361(2000)

21 Chen C.Y., Lu X.G., Comparison of FFC and SOM processes for preparation of chromium metal, Acta Metallurgica Sinica, 44(2), 145(2008)

22 Schwandt C, Alexander D T, Fray D J, The electro–deoxidation of porous titanium dioxide precursors in molten calcium chloride under cathodic potential control, Electrochimica Acta, 54(14), 3819(2009)

23 Liao X, Xie H, Zhaiy Y, Zhang Y, Preparation of Al3Sc Intermetallic Compound by FFC Method, Journal of Materials Sciences and Technology, 25(5), 717(2009)

24 Schwandt C, Fray D J, Determination of the kinetic pathway in the electrochemical reduction of titanium dioxide in molten calcium chloride, Electrochimica Acta, 51(1), 66(2005)

25 Fray C S D J, Determination of the kinetic pathway in the electrochemical reduction of titanium dioxide in molten calcium chloride, Electrochimica Acta, 51, 66(2005)

26 Chen G, Fray D, Farthing T, Cathodic deoxygenation of the alpha case on titanium and alloys in molten calcium chloride, Metallurgical and Materials Transactions B, 32(6), 1041(2001)

27 Schwandt C, Alexander D T, Fray D J, The electro–deoxidation of porous titanium dioxide precursors in molten calcium chloride under cathodic potential control, Electrochimica Acta, 54(14), 3819(2009)

28 Fray D J, Chen G Z, Reduction of titanium and other metal oxides using electrodeoxidation, Materials Science and Technology, 20(3), 295(2004)

29 Alexander D, Schwandt C, Fray D J, Microstructural kinetics of phase transformations during electrochemical reduction of titanium dioxide in molten calcium chloride, Acta Materialia, 54(11), 2933(2006)

30 Chen G Z, Fray D J, Voltammetric studies of the oxygen–titanium binary system in molten calcium chloride, Journal Of The Electrochemical Society, 149(11), E455(2002)

31 Dring K, D R D, Inman D, Voltammetry of Titanium Dioxide in Molten Calcium Chloride at 900  , Journal of The Electrochemical Society, 152(3), E104(2005)

32 Wang S, Li Y, Reaction mechanism of direct electro–reduction of titanium dioxide in molten calcium chloride, Journal of Electroanalytical Chemistry, 571(1), 37(2004)

33 Jiang K, Hu X, Sun H, Wang D, Jin X, Ren Y, Chen G Z, Electrochemical Synthesis of LiTiO2 and LiTi2O4 in Molten LiCl, Chemistry of Materials, 16, 4324(2004)

34 Qiu G, Ma M, Wang D, Jin X, Hu X, Chen G Z, Metallic Cavity Electrodes for Investigation of Powders, Journal of The Electrochemical Society, 152(10), E328(2005)

35 Hirota K, Okabe T H, Saito F, Waseda Y, Jacob K T, Electrochemical deoxidation of RE–O (RE=Gd, Tb, Dy, Er) solid solutions, 282, 101(1999)

36 Chen G Z, Fray D J, Voltammetric Studies of the Oxygen–Titanium Binary System in Molten Calcium Chloride, Journal of The Electrochemical Society, 149(11), E455(2002)

37 Barnett R, Kilby K, Fray D, Reduction of Tantalum Pentoxide Using Graphite and Tin–Oxide–Based Anodes via the FFC–Cambridge Process, Metallurgical and Materials Transactions B, 40(2), 150(2009)

38 Antti Roine J M P B, HSC Chemistry for Windows[DB/CD]. Version 6.0 ed. Pori, Finland: Research, Outokumpu, 2006.

39 LIANG Yingjiao, CHE Yinchang, Inorganic Thermodynamic Data Sheet (Shenyang, Liaoning, China, Northeastern University Press, 1993) p.634)

(梁英教, 车荫昌,  无机物热力学数据手册 (中国辽宁沈阳, 东北大学出版社, 1993)  p.634)

40 Littlewood R, Diagrammatic Representation of the Thermodynamics of Metal–Fused Chloride Systems, Journal of The Electrochemical Society, 109(6), 525(1962)

41 Jiang K, Hu X H, Ma M, Wang D H, Qiu G H, Jin X B, Chen G Z, ”Perovskitization”–assisted electrochemical reduction of solid TiO2 in molten CaCl2, Angewandte Chemie–International Edition, 45(3), 428(2006)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!