Please wait a minute...
Chinese Journal of Materials Research  2012, Vol. 26 Issue (6): 583-589    DOI:
Current Issue | Archive | Adv Search |
Numerical Simulation of Thermal Stress Distribution in CF/BMI Composite Subjected to Thermal Cycles
YU Qi1,  CHEN Ping2,  LU Chun1
1. School of Aerospace Engineering & Liaoning Key Laboratory of Advanced Polymer Matrix Composites, Shenyang Aerospace University, Shenyang 110136
2. School of Chemical Engineering & Liaoning Key Laboratory of Advanced Polymer Matrix Composites, Dalian University of Technology, Dalian 116024
Cite this article: 

YU Qi CHEN Ping LU Chun. Numerical Simulation of Thermal Stress Distribution in CF/BMI Composite Subjected to Thermal Cycles. Chinese Journal of Materials Research, 2012, 26(6): 583-589.

Download:  PDF(1109KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Finite element analysis was used to analyze thermal stress distribution in CF/BMI composite under exposure to thermal cycles. Parabolic failure criterion was used to predict the potential failure zone in composite. Birth and death element technique was used to reveal the microcracks distribution in composite induced by thermal stress. Thermal stress at composite free end zone is higher than that in inner zone, and the maximum stress locates at the fiber surface in resin-rich area of free end zone.
The potential failure zones locate at free end zone with the microcracks distributed along the interface, thus leads to interfacial debonding failure in composite. During the following thermal cycle, the thermal stress which is alleviated to some extent and redistributed, extends from free end zone to inner zone, thus exacerbates the degree of interfacial debonding. Properties evolution of CF/BMI composite subjected to thermal cycles were investigated, showing that the interfacial bond property was decreased due to the formation of microcracks along the interface. The numerical simulation results are in good agreement with the experiment results, which reasonably expect the potential failure zone in composite and analyze the reason of decrease in interfacial bond property induced by thermal cycles.

Key words:  foundational discipline in materials science      CF/BMI composite      thermal cycles      thermal stress distribution      finite element analysis     
Received:  20 September 2012     
ZTFLH:  TB332  
Fund: 

Supported by National Defense 12th 5 year Program Foundational Research Program No.A352xxxxxxx, Scientific Research Fund of Liaoning Provincial Education Department No.L2012055, and Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Dalian University of Technology) of the Education Ministry Foundation No.DP1051204.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2012/V26/I6/583

1 WU Liangyi, Application status of advanced composites in aerospace, The 13th Nationwide Symposium of Epoxy Resin Applied Technology Disscourse (Jiangsu, China Epoxy Resins Applied Technology Institute, 2009) p.117

(吴良义, 航空航天先进复合材料现状, 第十三次全国环氧树脂应用技术学术交流会论文集 (江苏, 中国环氧树脂应用技术学会, 2009) p.117)

2 CHEN Ping, LIAO Mingyi, Polymer Synthetic Material Science, the second edition (Beijing, Chemical Industry Press, 2010) p.153

(陈 平, 廖明义, 高分子合成材料学, 第二版  (北京, 化学工业出版社, 2010) p.153)

3 ZHAO Qusen, Low cost of QY8911 bismaleimide resin and its composites, Materials Review, 15(10), 2 (2001) 

(赵渠森, QY8911双马来酰亚胺树脂和复合材料低成本, 材料导报, 15(10), 2 (2001))

4 K.B.Shin, C.G.Kim, C.S.Hong, H.H.Lee, Prediction of failure thermal cycles in graphite/epoxy composite materials under simulated low earth orbit environments, Composites Part B-Engineering, 31, 223(2000)

5 T.Shimokawa, H.Katoh, Y.Hamaguchi, S.Sanbongi, H.Mizuno, Effect of thermal cycling on microcracking and strength degradation of high temperature poly composite materials for use in next-generation SST structures, Journal of Composite Materials, 36, 885(2002)

6 M.C.Lafarie-Frenot, Damage mechanisms induced by cyclic ply-stresses in carbon-epoxy laminates: Environmental effects, International Journal of Fatigue, 28, 1202(2006)

7 Z.Mei, D.D.L.Chung, Thermal stress-induced thermoplastic composite debonding, studied by contact electrical resistance measurement, International Journal of Adhesion and Adhesives, 20, 135(2000)

8 P.Rosso, K.Varadi, FE macro/micro analysis of thermal residual stresses and failure behavior under transverse tensile  load of VE/CF–fibre bundle composites, Composite Science and Technology, 66(16), 3241(2006)

9 L.G.Zhao, N.A.Warrior, A.C.Long, A micromechanical study of residual stress and its effect on transverse failure in polymer-matrix composites, International Journal of Solids and Structures, 43, 5449(2006)

10 C.Lu, P.Chen, Y.Gao, W.Qi, Q.Yu, Thermal stress distribution in CF/EP composite in low earth orbit, Journal of Composite Materials, 44, 1729(2010)

11 M.Gherlone, M.D.Sciuva, Thermo-mechanics of undamaged and damaged multilayered composite plates: a sublaminates finite element approach, Composite Structures, 81(1), 125(2007)

12 C.Lu, P.Chen, B.J.Yu, Computer simulation of thermal residual stressof carbon fiber/PPESK composite, Advanced Composites Letters, 16(1), 33(2007)

13 C.Lu, P.Chen, Q.Yu, J.L.Gao, B.J.Yu, Thermal residual stress distribution in carbon fiber/novel thermal plastic composite, Applied Composite Materials, 15, 157(2008)

14 Q.Yu, P.Chen, Y.Gao, J.J.Mu, Y.W.Chen, C.Lu, D.Liu, Effects of vacuum thermal cycling on mechanical and physical properties of high performance carbon/bismaleimide composite, Materials Chemistry and Physics, 130, 1046(2011)

[1] YANG Dongtian, XIONG Liangyin, LIAO Hongbin, LIU Shi. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[4] SUN Yi, HAN Tongwei, CAO Shumin, LUO Mengyu. Tensile Properties of Fluorinated Penta-Graphene[J]. 材料研究学报, 2022, 36(2): 147-151.
[5] LU Xiaoqing,ZHANG Quande,WEI Shuxian. Theoretical Study on Photoelectric Characteristic of A-π-D-π-A Indole-based Dye Sensitizers[J]. 材料研究学报, 2020, 34(1): 50-56.
[6] Xuexiong LI,Dongsheng XU,Rui YANG. CPFEM Study of High Temperature Tensile Behavior of Duplex Titanium Alloy[J]. 材料研究学报, 2019, 33(4): 241-253.
[7] Ruipeng GUO, Jing ZHANG, Lei XU, Jiafeng LEI, Yuyin LIU, Rui YANG. Mechanical Properties of Ti-5Al-2.5Sn ELI Powder Compacts[J]. 材料研究学报, 2018, 32(5): 333-340.
[8] Chen LIU, Lijian YANG, Xing ZHANG. Finite Element Analysis for Hemodynamic Behavior of Bioprosthetic Heart Valves[J]. 材料研究学报, 2018, 32(1): 51-57.
[9] Li HUANG. Stability and Heat storage Capacity of Phase Change Emulsion Paraffin/Water[J]. 材料研究学报, 2017, 31(10): 789-795.
[10] Min SHEN,Xiaoxiang SUN,Yang LIU. Influence of Interface Property on Effective Modulus and Tensile Behavior of Short Fiber Reinforced Composite[J]. 材料研究学报, 2016, 30(9): 681-689.
[11] XU Lei, GUO Ruipeng, CHEN Zhiyong, JIA Qing, WANG Qingjiang. Mechanical Property of Powder Compact and Forming of Large Thin-Wall Cylindrical Structure of Ti55 Alloys[J]. 材料研究学报, 2016, 30(1): 23-30.
[12] Liang ZHU,Jing WANG,Xiaohui LI,Hongbo SUO,Yiliang ZHANG. R-S-N Mathematical Model Based on TC18 by BW High Cycle Fatigue Test Data[J]. 材料研究学报, 2015, 29(9): 714-720.
[13] Yang CHEN,Cheng QIAN,Zhitang SONG,Guoquan MIN. Measurement of Compressive Young’s Modulus of Polymer Particles Using Atomic Force Microscopy[J]. 材料研究学报, 2014, 28(7): 509-514.
[14] Guiqin YU,Jianjun LIU,Yongmin LIANG. Synthesis and Tribological Performance of Guanidinium Ionic Liquids as Lubricants for Steel /Steel Contacts[J]. 材料研究学报, 2014, 28(6): 448-454.
[15] Xiaogang WANG,Yueyi LI,Hailan WANG,Cunlong ZHOU,Qinxue HUANG. Numerical Modeling for Roller Leveling Process of Bimetal-Plate[J]. 材料研究学报, 2014, 28(4): 308-313.
No Suggested Reading articles found!