Please wait a minute...
Chin J Mater Res  2011, Vol. 25 Issue (3): 321-326    DOI:
论文 Current Issue | Archive | Adv Search |
Solvothermal Synthesis of Nanometer LiFePO4/C Composite Cathode Materials
TIAN Li 1,2, HUANG Kelong1
1.School of Chemistry and Chemical Engineering, Central South University, Changsha 410083
2.Department of Material Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201
Cite this article: 

TIAN Li, HUANG Kelong. Solvothermal Synthesis of Nanometer LiFePO4/C Composite Cathode Materials. Chin J Mater Res, 2011, 25(3): 321-326.

Download:  PDF(1061KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Nanosized LiFePO4/C composite cathode materials have been synthesized via solvothermal method, using sucrose as carbon source and glycol as solvent. The phase, morphology, structure, composition and performance of LiFePO4/C powders were characterized. The results show that LiFePO4/C composite has uniform nanorod morphology with the diameter of about 100 nm, well-crystallinity and monodispersion. Galvanostatic charge-discharge tests showed that the size-reducation and carbon-coating of LiFePO4/C nanograins are in favor of optimizing the electrochemical performance of LiFePO4 positive materials. The first charge and discharge specific capacities of 166 mAh·g−1 and 164 mAh·g−1 were obtained at 0.1 C, while the voltage platforms were 3.45 V and 3.40 V, respectively. The nanosized LiFePO4/C composite cathode materials retained high stability after 20 cycles at 5 C, with the specific capacity retention up to 95.4%.
Key words:  synthesizing and processing technics      solvothermal synthesis      LiFePO4/C      nanomaterials      electrochemical properties     
Received:  23 February 2011     
ZTFLH: 

TB333

 
  TM912.9

 
Fund: 

Supported by China Postdoctoral Science Foundation No.20100480947, Postdoctoral Science Foundation of Central South University No.1332-74341015511, Doctor Start-up Research Fund in Hunan University of Science and Technology No.E51079, and the Teaching and Education Reform Program in Hunan University of Science and Technology No.G30953.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2011/V25/I3/321

1 YU Chuan, YANG Shaowu, MENG lina, Research progress on modification of lithium iron phosphate used as cathode for lithium ion batteries, New Chemical Materials, 37(5), 12(2009)

(于川, 杨绍武, 孟丽娜, 正极材料磷酸铁锂的改性研究进展, 化工新型材料, 37(5), 12(2009))

2 K.Saravanan, P.Balay, M.V.Reddy, B.V.R.Chowdari, J.J.Vittal, Morphology controlled synthesis of LiFePO4/C nanoplates for Li–ion batteries, Energy Environ. Sci., 3(4), 457(2010)

3 B.Ellis, W.H.Kan, W.R.M.Makahnouk, L.F.Nazar, Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4, J. Mater. Chem., 17(30), 3248(2007)

4 K.Saravanana, M.V.Reddyb, P.Balaya, H.Gongd, B.V.R.Chowdarib, J.J.Vittal, Storage performance of LiFePO4 nanoplates, J. Mater. Chem., 19(5), 605(2009)

5 J.Liu, J.W.Wang, X.D.Yan, X.F.Zhang, G.L.Yang, A.F.Jalbout, R.S.Wang, Long-term cyclability of LiFePO4/C composite cathode material for lithiumion battery applications, Electrochimica Acta, 54(24),5656(2009)

6 C.M.Julien, A.Mauger, A.Ait-Salah, M.Massot, F.Gendron, K.Zaghib, Nanoscopic scale studies of LiFePO4 as cathode material in lithium-ion batteries for HEV application, Ionics, 13(6), 395(2007)

7 G.X.Wang, H.Liu, J.Liu, S.Z.Qiao, G.Q.M.Lu, P.Munroe, H.Ahn, Mesoporous LiFePO4/C nano-composite cathode materials for high power lithium ion batteries with superior performance, Adv. Mater., 22(44), 4944(2010)

8 S.Lim, C.S.Yoon, J.Cho, Synthesis of nanowire and hollow LiFePO4 cathodes for high-performance lithium batteries, Chem. Mater., 20(14), 4560(2008)

9 E.J.Hosono, Y.G.Wang, N.Kida, M.Enomoto, N.Kojima, M.Okubo, H.Matsuda, Y.Saito, T.Kudo, T.Honma, H.S.Zhou, Synthesis of triaxial LiFePO4 nanowire with a vgcf core column and a carbon shell through the electrospinning method, ACS Appl. Mater. & Interfaces, 2(1), 212(2010)

10 N.N.Sinha, C.Shivakumara, N.Munichandraiah, High rate capability of a dual–porosity LiFePO4/C composite, ACS Appl. Mater. & Interfaces, 2(7), 2031(2010)

11 M.H.Lee, J.Y.Kim, H.K.Song, A hollow sphere secondary structure of LiFePO4 nanoparticles, Chem. Commun., 46(36), 6795(2010)

12 S.W.Oh, S.T.Myung, S.M.Oh, K.H.Oh, K.Amine, B.Scrosati, Y.K.Sun, Double carbon coating of LiFePO4 as high rate electrode for rechargeable lithium batteries, Adv. Mater., 22(43) , 4842(2010)

13 H.Liu, P.Zhang, G.C.Li, Q.Wu, Y.P.Wu, LiFePO4/C composites from carbothermal reduction method, J.Solid State Electroehem., 12(7-8), 1011(2008)

14 N.N.Sinha, N.Munichandraiah, Single-shot preparation of crystalline nanoplate LiFePO4 by a simple polyol route, J. Electrochem. Soc., 157(7), A824(2010)

15 C.Alvaro, C.Y.Manuel, M.Juli´an, S.P.Jes´us, R.C.Enrique, A new and fast synthesis of nanosized LiFePO4 electrode materials, Eur. J. Inorg. Chem., (9), 1758(2006)

16 Y.Q.Wang, J.L.Wang, J.Yang, Y.Nuli, High–rate LiFePO4 electrode material synthesized by a novel route from FePO4 ·4H2O, Adv. Funct. Mater., 16(16), 2135(2006)

17 D.Rangappa, K.J.Sone, T.Kudo, I.Honma, Directed growth of nanoarchitectured LiFePO4 electrode by solvothermal synthesis and their cathode properties, J. Power Sources, 195(18), 6167(2010)

18 F.Teng, S.Santhanagopalan, R.Lemmens, X.B.Geng, P.Patel, D.D.Meng, In situ growth of LiFePO4 nanorod arrays under hydrothermal condition, Solid State Sci., 12(5), 952(2010)

19 X.J.Huang, S.J.Yan, H.Y.Zhao, L.Zhang, R.Guo, C.K.Chang, X.Y.Kong, H.B.Han, Electrochemical performance of LiFePO4 nanorods obtained from hydrothermal process, Mater. Charact., 61(7), 720(2010)

20 G.Meligrana, C.Gerbaldi, A.Tuel, S.Bodoardo, N.Penazzi, Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li–ion cells, J. Power Sources, 160(1), 516(2006)

21 J.F.Ni, M.Morishit, Y.Kawabe, M.Watada, N.Takeichi, T.Sakai, Hydrothermal preparation of LiFePO4 nanocrystals mediated by organic acid, J. Power Sources, 195(9), 2877(2010)

22 K.Kanamura, S.Koizumi, K.Dokko, Hydrothermal synthesis of LiFePO4 as a cathode material for lithium batteries, J. Mater. Sci., 43(7), 2138(2008)
[1] LIU Yanyun, LIU Yutao, LI Wanxi. Preparation and Electrochemical Performance of rGO/PANI/MnO2 Ternary Composites[J]. 材料研究学报, 2022, 36(7): 552-560.
[2] YAN Fuzhao, LI Jing, XIONG Liangyin, LIU Shi. Preparation and Microstructure of FeCr-ODS Ferrite Alloy Fabricated by Oxidation and Powder Forging[J]. 材料研究学报, 2022, 36(6): 461-470.
[3] YIN Jie, HU Yuntao, LIU Hui, YANG Yifei, WANG Yifeng. Constructing Polyaniline/Alginate Film by Electrodeposition and Its Electrochemical Properties[J]. 材料研究学报, 2022, 36(4): 314-320.
[4] WANG Yongpeng, JIA Zhihao, LIU Mengzhu. Feasibility of Electrospun 2-Dimensional CdO Nanorods for Application in Glucose Sensors[J]. 材料研究学报, 2021, 35(1): 53-58.
[5] XIA Ao, ZHAO Chenpeng, ZENG Xiaoxiong, HAN Yuepeng, TAN Guoqiang. Preparation and Electrochemical Properties of B-doped MnO2[J]. 材料研究学报, 2021, 35(1): 36-44.
[6] CAI Guodong, CHENG Xiyun, WANG Dian. Preparation of 316L Stainless Steel Products by Fused Deposition Model 3D-printing and Effect of La on Morphology and Distribution of Precipitates[J]. 材料研究学报, 2020, 34(8): 635-640.
[7] XIE Lilan, YANG Dongsheng, LING Jing. Synthesis and Formation Mechanism of Lithium Battery High-Capacity Anode Material TiNb2O7[J]. 材料研究学报, 2020, 34(5): 385-391.
[8] MA Weijie,YANG Xirong,LUO Lei,LIU Xiaoyan,HAO Fengfeng. Dynamic Recrystallization Model of Ultrafine Grain Pure Titanium Prepared by Combined Deformation Process[J]. 材料研究学报, 2020, 34(3): 217-224.
[9] JIANG Jufu, WANG Ying, XIAO Guanfei, DENG Teng, LIU Yingze, ZHANG Ying. Influence of Modification, Refinement and Heat Treatment on Mechanical Properties of A356 Al-alloy Components Prepared by Squeeze Casting[J]. 材料研究学报, 2020, 34(12): 881-891.
[10] YANG Zhanxin, WU Qiong, REN Yiqiao, QU Kaikai, ZHANG Zhehao, ZHONG Weili, FAN Guangning, QI Guochao. Massive Preparation and Supercapacitor Performance of Layered Ti3C2[J]. 材料研究学报, 2020, 34(11): 861-867.
[11] Bin QIN,Qun WANG,FuMeng WANG,LiE JIN,XiaoLing XIE,Qing CAO. Preparation of Needle Cokes with High Electrical Conductivity and Low Coefficient of Thermal Expansion[J]. 材料研究学报, 2019, 33(1): 53-58.
[12] Qiang WANG, Ruiting HAO, Qichen ZHAO, Sijia LIU. Preparation of Cu2ZnSnS4 Thin Film Solar Cells by Cyclically and Sequentially Sputtering Three Sulfide-targets[J]. 材料研究学报, 2018, 32(6): 409-414.
[13] Yanwei LI, Zhiping XIE, Canzheng LIU, Jinhuan YAO, Jiqiong JIANG, Jianwen YANG. Preparation and Lithium Storage Performance of Two Dimensional Fold-like V2O5 Nanomaterial[J]. 材料研究学报, 2017, 31(5): 374-380.
[14] Chengdong LI, Zhilei YAO, Ju LI, Jin XU, Xin XIONG. Preparation and Electrochemical Performance of LaF3-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as Cathode Material for Lithium-ion Batteries[J]. 材料研究学报, 2017, 31(5): 394-400.
[15] TANG Zhaohui, DING Xueyong, DONG Yue, LIU Chenghong, WEI Guo. Influence of w(MgO) on Viscous Flow Property of High Ti-containing Blast Furnace Slag[J]. 材料研究学报, 2016, 30(6): 443-447.
No Suggested Reading articles found!