Please wait a minute...
Chin J Mater Res  2011, Vol. 25 Issue (2): 124-128    DOI:
论文 Current Issue | Archive | Adv Search |
Numerical Analysis of the Microstructure Evolution of Monotectic Alloys in Magnetic Field
KANG Zhiqiang, WANG Engang, ZHANG Lin, HE Jicheng
Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819
Cite this article: 

KANG Zhiqiang WANG Engang ZHANG Lin HE Jicheng. Numerical Analysis of the Microstructure Evolution of Monotectic Alloys in Magnetic Field. Chin J Mater Res, 2011, 25(2): 124-128.

Download:  PDF(956KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A two–phase mathematical model for the solidification process of monotectic alloys through the miscibility gap was established. The effect of magnetic field on the microstructural evolutions of an Al–10%Bi hypermonotectic alloy was investigated, and the effect of temperature, velocity and second phase volume fraction distribution on the macrosegregation were analyzed. The results showed that the centrosymmetric distribution of temperature field in the magnetic field was more advantageous to the uniform distribution of second phase droplets. Because partial gravity force and Marangoni force were counteracted by the Lorentz force, the velocity field changed from the outward circumfluence to the moving downward slope form in the magnetic field, and the velocity reduced obviously, thus the gravity
segregation caused by strong convection was suppressed. Second phase volume fraction reduced in the specimen bottom in the magnetic field, and the macrosegregation was improved.
Key words:  metallic materials       magnetic field       numerical simulation       microstructural evolution       monotectic alloy       macrosegregation     
Received:  30 August 2010     
ZTFLH: 

TG244

 
Fund: 

Supported by National High Technology Research and Development Program of China No.2007AA03Z519, National Natural Science Foundation of China Nos.50574027, 50901019, the Research Fund for the Doctoral Program of Higher Education of China No.20070145062, and the 111 Project of China No.B07015.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2011/V25/I2/124

1 B.Prinz, A.Romero, L.Ratke, Casting process for hypermonotectic alloys under terrestrial conditions, J. Mater. Sci., 30(18), 4715(1995)

2 J.He, J.Z.Zhao, H.L.Li, X.F.Zhang, Q.X.Zhang, Directional solidification and microstructural refinement of immiscible alloys, Metall. Mater. Trans. A, 39A(5), 1174(2008)

3 S.Yang, W.J.Liu, Effects of transverse magnetic field during directional solidification of monotectic Al–6.5wt%Bi alloy, J. Mater. Sci., 36, 5351(2001)

4 H.Yasuda, I.Ohnaka, O.Kawakami, K.Ueno, K.Kishio, Effect of magnetic field on solidification in Cu–Pb monotectic alloys, ISIJ Int., 43(6), 942(2003)

5 H.Yasuda, I.Ohnaka, S.Fujimoto, N.Takezawa, A.Tsuchiyama, T.Nakano, K.Uesugi, Fabrication of aligned pores in aluminum by electrochemical dissolution of monotectic alloys solidified under a magnetic field, Scripta Mater., 54(4), 527(2006)

6 H.L.Li, J.Z.Zhao, Directional solidification of an Al–Pb alloy in a static magnetic field, Comput.n Mater.n Sci.n, 46(4), 1069(2009)

7 P.Th´evoz, J.nL.Desbiolles, M.nRappaz, Modeling of equiaxed microstructure formation in casting, Metall. Mater. Trans. A, 20A(2), 311(1989)

8 WANG Tongmin, YAO Shan, ZhANG Xingguo, JIN Junze, M.Wu, A.Ludwig, B.Pustal, A.B¨uhrig–Polaczek, Modelling of the thermo–solutal convection, shrinkage flow and grain movement during globular equiaxed solidification in a multi–phase system I. Three–phase flow model, Acta Metallurgica Sinica, 42(6), 584(2006)

(王同敏, 姚山, 张兴国, 金俊泽, M.Wu, A.Ludwig, B.Pustal, A.Buhrig--Polaczek, 等轴球晶凝固多相体系内热溶质对流、补缩流及晶粒运动的数值模拟I.三相流模型, 金属学报, 42(6), 584(2006))9 L.Ratke, S.Diefenbach, Liquid immiscible alloys, Mater. Sci. Eng., R, 15(7–8), 263(1995)

10 M.H.Wu, A.Ludwig, A three–phase model for mixed columnar–equiaxed solidification, Metall. Mater. Trans. A, 37A(5), 1613(2006)

11 J.Z.Zhao, S.Drees, L.Ratke, Strip casting of Al–Pb alloys–a numerical analysis, Mater. Sci. Eng., A, 282(1–2), 262(2000)

12 G.Kaptay, On the temperature gradient induced interfacial gradient force, acting on precipitated liquid droplets in monotectic liquid alloys, Mater. Sci. Forum, 508, 269(2006)

13 G.Phanikumar, P.Dutta, R.Galun, K.Chattopadhyay, Microstructural evolution during remelting of laser surface alloyed hyper–monotectic Al–Bi alloy, Mater. Sci. Eng., A, 371(1–2), 91(2004)

14 L.Ratke, G.Korekt, S.Drees, Phase separation and solidification of immiscible metallic alloys under low gravity, Adv. Space Res., 22(8), 1227(1998)

15 H.L.Li, J.Z.Zhao, Q.X.Zhang, J.He, Microstructure formation in a directionally solidified immiscible alloy, Metall. Mater. Trans. A, 39A(13), 3308(2008)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!