Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (3): 197-203    DOI: 10.11901/1005.3093.2013.480
Current Issue | Archive | Adv Search |
Determination of Reaction Degree of Silica Fume and Fly Ash in a Cement - silica fume - fly ash Ternary Cementitious System
Wu YAO(),Mengxue WU,Yongqi WEI
Key Laboratory of Advanced Civil Engineering Materials(Tongji University), Ministry of Education, Shanghai 201804
Cite this article: 

Wu YAO,Mengxue WU,Yongqi WEI. Determination of Reaction Degree of Silica Fume and Fly Ash in a Cement - silica fume - fly ash Ternary Cementitious System. Chinese Journal of Materials Research, 2014, 28(3): 197-203.

Download:  HTML  PDF(722KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The reaction processes of mineral admixtures in a cement-silica fume-fly ash ternary cementitious system aged for different time were quantitatively studied by means of selective dissolution and non-evaporative water content methods. To determine separately the degree of pozzolanic reaction for silica fume in the ternary system, fly ash was replaced by the inert quartz powder with the same fineness and same dosage in order to eliminate the dilution effect and heterogeneous nucleation effect. Then the reaction degree of fly ash can be calculated from the total reaction degree of all the admixtures in the system. The test results demonstrated that only 1 d after the beginning of the hydration, the pozzolanic reaction for silica fume already started, and the reaction exhibited a fast rate in the early stage but a slow one in the later stage. However, the same reaction with a rapidly increasing rate for fly ash just began only 7 d after the beginning of the hydration. In the ternary cementitious system, the hydration degrees for both silica fume and fly ash were reduced with the increasing fly ash content.

Key words:  foundational discipline in materials science      ternary cementitious system      fly ash      silica fume      reaction degree      selective dissolution     
Received:  10 July 2013     
Fund: *Supported by National Key Basic Research and Development Program of China No.2009CB62305.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.480     OR     https://www.cjmr.org/EN/Y2014/V28/I3/197

Material Na2O MgO Al2O3 SiO2 P2O5 SO3 K2O CaO MnO Fe2O3 LOI
Silica fume 0.37 0.70 0.30 94.50 0.13 0.40 1.16 0.94 0.02 0.06 1.42
Fly ash 0.45 1.23 28.98 54.70 0.18 0.58 1.65 4.48 0.06 5.24 2.45
Cement clinker 0.61 0.92 5.48 23.10 0.07 0.48 0.76 64.80 0.08 3.15 0.55
Table 1  Chemical compositions of materials (mass fraction, %)
Fig.1  Particle size distributions of cement, fly ash, silica fume and quartz
Sample No. Cement Silica fume Fly ash Quartz Water
C 80 0 0 0 24
C-1SF 72 8 0 0 24
C-2FA 64 0 16 0 24
C-2Q 64 0 0 16 24
C-4FA 48 0 32 0 24
C-4Q 48 0 0 32 24
C-1SF-2FA 56 8 16 0 24
C-1SF-2Q 56 8 0 16 24
C-1SF-4FA 40 8 32 0 24
C-1SF-4Q 40 8 0 32 24
Table 2  Sample No. and mix proportion of binders (g)
Sample Residual content /% Sample Hydration degree /%
EDTA-AS SD-PA EDTA-AS SD-PA
Silica fume 98.0 94.7 C-1SF-1d 20.1 21.1
Fly ash 96.6 92.8 C-2FA-1d 4.6 6.1
Quartz 99.6 99.7 C-2Q-90d 0.7 0.9
Clinker 1.7 1.6
Table 3  Results of selective dissolution by EDTA-AS and SD-PA
Raw material Mean( R ? ) S r CV/%
Clinker 1.7 0.3 0.4 24.0
Silica fume 98.0 0.5 0.7 0.7
Fly ash 96.6 1.0 1.4 1.5
Quartz 99.6 0.4 0.6 0.6
Table 4  Residual content of raw materials in selective dissolution
Sample No. 1 d 3 d 7 d 28 d
C 6.85 11.05 11.86 13.79
C-1SF 6.66 11.05 11.80 12.56
C-2FA 5.58 8.40 11.11 12.53
C-2Q 5.44 10.53 12.23 13.20
C-4FA 4.35 8.13 10.27 11.16
C-4Q 4.45 8.14 9.78 11.63
C-SF-2FA 5.79 9.10 10.11 11.57
C-SF-2Q 5.66 10.09 10.64 11.39
C-SF-4FA 4.07 7.67 8.15 9.51
C-SF-4Q 4.12 7.94 8.97 9.71
Table 5  Non-evaporative water content at different ages (%)
Fig.2  Hydration degree of cement in samples C, C-4FA and C-4Q
Age/d C-1SF C-2FA C-4FA C-1SF-2FA C-1SF-4FA
aSF aFA aFA aSF aFA aSF aFA
1 20.31 4.76 3.92 16.07 3.73 12.59 2.44
3 32.80 5.23 3.77 22.29 4.06 16.27 2.76
7 39.15 6.37 4.82 26.88 5.41 20.38 3.43
28 50.58 17.32 13.03 39.19 15.13 27.05 11.84
Table 6  Hydration degrees of silica fume and fly ash in ternary cementitious system (%)
Fig.3  Reaction degree of silica fume at different hydration ages
Fig.4  Reaction degree of fly ash at different hydration ages
1 J. B. Green, S. E. Manahan,Determination of acid-base and solubility behavior of lignite fly ash by selective dissolution in mineral acids, Analytical Chemistry, 50(14), 1975(1978)
2 S. Li, D. M. Roy, A. Kumar,Quantatative determination of pozzolanas in hydrated systems of cement or Ca(OH)2 with fly ash or silica fume, Cement and Concrete Research, 15(6), 1079(1985)
3 S. Ohsawa, K. Asaga, S. Goto, M. Daimon. Quantitative determination of fly ash in the hydrated fly ash - CaSO42H2O Ca(OH)2 system, Cement and Concrete Research, 15(2), 357(1985)
4 B. Suprenant, G. Papadopoulos,Selective dissolution of Portland-fly-ash cements, Journal of Materials in Civil Engineering, 3(1), 48(1991)
5 Y. M. Zhang, W. Sun, H. D. Yan,Hydration of high-volume fly ash cement pastes, Cement and Concrete Composites, 22(6), 445(2000)
6 L. Lam, Y. L. Wong, C. S. Poon,Degree of hydration and gel/space ratio of high-volume fly ash/cement systems, Cement and Concrete Research, 30(5), 747(2000)
7 H. M. Dyson, I. G. Richardson, A. R. Brough,A combined 29Si MAS NMR and selective dissolution technique for the quantitative evaluation of hydrated blast furnace slag cement blends, Journal of the American Ceramic Society, 90(2), 598(2007)
8 M. B. Haha, K. D. Weerdt, B. Lothenbach,Quantification of the degree of reaction of fly ash, Cement and Concrete Research, 40(11), 1620(2010)
9 Q. Zeng, K. Li, T. Fen-Chong, P. Dangla,Determination of cement hydration and pozzolanic reaction extents for fly-ash cement pastes, Construction and Building Materials, 27(1), 560(2012)
10 YAO Yumei,SHI Huisheng, SHI Tao, Measurement of degree of hydraulicity in high performance cement-coal gangue system, Cement,(9), 1(2006)
10 (姚玉梅, 施惠生, 施 韬, 高性能水泥-煤矸石体系水化反应程度的测定, 水泥, (9), 1(2006))
11 LIU Zhihui,SHAO Wei, LAN Xianghui, LU Chunhua, XU Zhongzi, Hydration degree of fly ash in blended cement-fly ash paste, Journal of Building Materials, 14(2), 169(2011)
11 (刘志辉, 邵 伟, 兰祥辉, 陆春华, 许仲梓, 水泥-粉煤灰复合浆体中粉煤灰的火山灰反应程度, 建筑材料学报, 14(2), 169(2011))
12 ZHENG Keren,SUN Wei, JIA Yantao, GUO Liping, Method to determine reaction degrees of constituents in hydrating ternary blends composed of BFS, FA and Portland cement, Journal of Southeast University(Natural Science Edition), 43(3), 361(2004)
12 (郑克仁, 孙 伟, 贾艳涛, 郭丽萍, 水泥-矿渣-粉煤灰体系中矿渣和粉煤灰反应程度测定方法, 东南大学学报(自然科学版), 43(3), 361(2004))
13 M. Cyr, P. Lawrence, E. Ringot,Efficiency of mineral admixtures in mortars: quantification of the physical and chemical effects of fine admixtures in relation with compressive strength, Cement and Concrete Research, 36(2), 264(2006)
14 QUAN Hao, HAN Yongzhi, Reference Materials and Its Applications(Beijing, Chinese Standard Press, 2003)p.72
14 (全 浩, 韩永志, 标准物质及其应用技术(北京, 中国标准出版社, 2003)p.72)
15 YAN Peiyu,ZHANG Qinghuan, Microstructural characteristics of complex binder paste containing active or inert mineral admixtures, Journal of the Chinese Ceramic Society, 34(12), 1491(2006)
15 (阎培渝, 张庆欢, 含有活性或惰性掺合料的复合胶凝材料硬化浆体的微观结构特征, 硅酸盐学报, 34(12), 1491(2006))
16 LI Xiang,A Ruhan, YAN Peiyu, Research on hydration degree of cement-fly ash complex binders, Journal of Building Materials, 13(5), 584(2010)
16 (李 响, 阿茹罕, 阎培渝, 水泥-粉煤灰复合胶凝材料水化程度的研究, 建筑材料学报, 13(5), 584(2010))
[1] YANG Dongtian, XIONG Liangyin, LIAO Hongbin, LIU Shi. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[4] SUN Yi, HAN Tongwei, CAO Shumin, LUO Mengyu. Tensile Properties of Fluorinated Penta-Graphene[J]. 材料研究学报, 2022, 36(2): 147-151.
[5] LU Xiaoqing,ZHANG Quande,WEI Shuxian. Theoretical Study on Photoelectric Characteristic of A-π-D-π-A Indole-based Dye Sensitizers[J]. 材料研究学报, 2020, 34(1): 50-56.
[6] Xuexiong LI,Dongsheng XU,Rui YANG. CPFEM Study of High Temperature Tensile Behavior of Duplex Titanium Alloy[J]. 材料研究学报, 2019, 33(4): 241-253.
[7] Xiaolu GUO, Fanjie MENG. Microstructure of Hydrothermally Synthesized Fly Ash-based Tobermorite Doped with Aluminum[J]. 材料研究学报, 2018, 32(7): 513-517.
[8] Xiaolu GUO,Huisheng SHI. Durability and Pore Structure of Nano-particle-modified Geopolymers of Waste Brick Powder-class C Fly Ash[J]. 材料研究学报, 2017, 31(2): 110-116.
[9] Miaomiao LI,Ping CHEN,Hui WANG,Jianchao LI. Preparation and Tensile-compressive Properties of Syntactic Foams of Epoxy Resin Filled with Fly Ash Cenospheres[J]. 材料研究学报, 2017, 31(2): 88-95.
[10] Sixie ZHAO, Hua YAN, Hongtao WANG, Yuntao LI, Fengle DAI. Effect of Fly Ash Content on Hydration Kinetics of Magnesium Potassium Phosphate Cement[J]. 材料研究学报, 2017, 31(11): 839-846.
[11] Li HUANG. Stability and Heat storage Capacity of Phase Change Emulsion Paraffin/Water[J]. 材料研究学报, 2017, 31(10): 789-795.
[12] GUO Xiaolu, SHI Huisheng, XIA Ming. Effect of Different Calcium Resouces on Reaction Mechanism of Geopolymer[J]. 材料研究学报, 2016, 30(5): 348-354.
[13] PANG Jianfeng, HUANG Wenjuan, LU Yanqiu, LI Ling, QIU Quan, MA Xijun, XIE Xingyong. Preparation and Microwave Absorption Properties of Cenospheres-Barium Ferrite Composites[J]. 材料研究学报, 2016, 30(4): 314-320.
[14] Liang ZHU,Jing WANG,Xiaohui LI,Hongbo SUO,Yiliang ZHANG. R-S-N Mathematical Model Based on TC18 by BW High Cycle Fatigue Test Data[J]. 材料研究学报, 2015, 29(9): 714-720.
[15] Yang CHEN,Cheng QIAN,Zhitang SONG,Guoquan MIN. Measurement of Compressive Young’s Modulus of Polymer Particles Using Atomic Force Microscopy[J]. 材料研究学报, 2014, 28(7): 509-514.
No Suggested Reading articles found!