Please wait a minute...
Chin J Mater Res  2011, Vol. 25 Issue (1): 19-24    DOI:
论文 Current Issue | Archive | Adv Search |
Fabrication and Optical Properties of PVAC–functionalized ZnO Nanoparticles through Plasma Polymerization Process
YANG Huihui, HUANG Rongjin, HUANG Chuanjun, ZHANG Hao, LI Laifeng, XU Xiangdong
Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190
Cite this article: 

YANG Huihui HUANG Rongjin HUANG Chuanjun ZHANG Hao LI Laifeng XU Xiangdong. Fabrication and Optical Properties of PVAC–functionalized ZnO Nanoparticles through Plasma Polymerization Process. Chin J Mater Res, 2011, 25(1): 19-24.

Download:  PDF(1107KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Surface modification of ZnO nanoparticle with polyvinyl acetate was conducted through–plasma polymerization process. The surface morphology and structure of the functionalized ZnO nanoparticles were investigated. The influence of surface modification on optical properties was examined. The results indicated that a uniform layer with a thickness of 3–7 nm formed on the surface of the ZnO nanoparticles. The thin layer on the surface of the ZnO nanoparticles was found to be polyvinyl acetate (PVAC). Moreover, ageing test for two years indicated that the adhesion behavior between the organic VAC and the inorganic ZnO nanoparticles was good. In marked contrast to the uncoated ZnO nanoparticles, the surface modification resulted in significant decrease of PL intensity. UV/Vis spectra revealed that the PVAC–functionalized ZnO nanoparticles show strong absorption of UV light at wavelengths between 200 and 800 nm while the optical transparency in the visible region was slightly below that of the untreated ZnO nanoparticles.
Key words:  composites       plasma polymerization       surface modification       ZnO nanoparticles     
Received:  07 July 2010     
ZTFLH: 

TB43

 
Fund: 

Supported by National Natural Science Foundation of China No. 50947034 and Tianjin Specific Foundation of CAS No. TJZX2–YW–18.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2011/V25/I1/19

1 L.Feng, C.Cheng, B.D.Yao, N.Wang, M.M.T.Loy, Photoluminescence study of single ZnO nanostructures: Size effect, Applied Physics Letters, 95(5), 053113(2009)

2 Y.L.Wu, A.I.Y.Tok, F.Y.C.Boey, X.T.Zeng, X.H.Zhang, Surface modification of ZnO nanocrystals, Applied Surface Science, 253(12), 5473(2007)

3 L.C.Chao, S.H.Yang, Growth and Auger electron spectroscopy characterization of donut–shaped ZnO nanostructures, Applied Surface Science, 253(17), 7162 (2007)

4 Y.J.Jang, C.Simer, T.Ohm, Comparison of zinc oxide nanoparticles and its nano–crystalline particles on the photocatalytic degradation of methylene blue, Materials

Research Bulletin, 41(1), 67(2006)

5 J.Eriksson, V.Khranovskyy, F.Soderlind, P.O.Kall, R.Yakimova, A.L.Spetz, ZnO nanoparticles or ZnO films: A comparison of the gas sensing capabilities, Sensors and

Actuators B–Chemical, 137(1), 94 (2009)

6 S.Chakrabarti, B.K.Dutta, Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst, Journal of Hazardous Materials, 112(3),

269(2004)

7 M.L.Curri, R.Comparelli, P.D.Cozzoli, G.Mascolo, A.Agostiano, Colloidal oxide nanoparticles for the photocatalytic degradation of organic dye, Materials Science & Engineering C–Biomimetic and Supramolecular Systems, 23(1–2), 285(2003)

8 R.Y.Hong, T.T.Pan, J.Z.Qian, H.Z.Li, Synthesis and surface modification of ZnO nanoparticles, Chemical Engineering Journal, 119(2–3), 71(2006)

9 F.H.Su, Z.Z.Zhang, W.M.Liu, Friction and wear behavior of hybrid glass/PTFE fabric composite reinforced with surface modified nanometer ZnO, Wear, 265(3–4), 311(2008)

10 TIAN Jiwen, CHEN Min, LI Changmin, ZHANG Qingyu, REN Chunsheng, Advances in biomaterial surface m0dification for biomolecules immobilization using low z temperature plasma, Materials Review, 19(3), 10 (2005)

(田继问, 陈 敏, 李长敏, 张庆瑜, 任春生, 低温等离子体对生物材料表面改性固定生物分子的研究进展, 材料导报,  19(3), 10(2005))

11 Z.N.Utegulov, D.B.Mast, P.He, D.L.Shi, R.F.Gilland, Functionalization of single–walled carbon nanotubes using isotropic plasma treatment: Resonant Raman spectroscopy

study, Journal of Applied Physics, 97(10), 4(2005)

12 M.W.Shao, M.L.Zhang, N.B.Wong, D.D.D.Ma, H.Wang, W.W.Chen, S.T.Lee, Ag–modified silicon nanowires substrate for ultrasensitive surface–enhanced raman spectroscopy,

Applied Physics Letters, 93(23), 233118(2008)

13 D.L.Shi, J.Lian, P.He, L.M.Wang, W.J.van Ooij, M.Schulz, Y.J.Liu, D.B.Mast, Plasma deposition of ultrathin polymer films on carbon nanotubes, Applied Physics Letters, 81(27), 5216(2002)

14 D.L.Shi, S.X.Wang, W.J.van Ooij, L.M.Wang, J.G.Zhao, Z.Yu, Uniform deposition of ultrathin polymer films on the surfaces of Al2O3 nanoparticles by a plasma treatment, Applied Physics Letters, 78(9), 1243(2001)

15 J.Zhao, D.L.Shi, J.Lian, Small angle light scattering study of improved dispersion of carbon nanofibers in water by plasma treatment, Carbon, 47(10), 2329(2009)

16 D.S.Vicentini, A.Smania, M.C.M.Laranjeira, Chitosan/ poly (vinyl alcohol) films containing ZnO nanoparticles and plasticizers, Materials Science & Engineering C–Materials for Biological Applications, 30(4), 503(2010)

17 E.Kandare, J.M.Hossenlopp, Thermal degradation of acetate–intercalated hydroxy double and layered hydroxy salts, Inorganic Chemistry, 45(9), 3766(2006)

18 M.H.Rashid, M.Raula, R.R.Bhattacharjee, T.K.Mandal, Low–temperature polymer–assisted synthesis of shape– tunable zinc oxide nanostructures dispersible in both aqueous and non–aqueous media, Journal of Colloid and Interface Science, 339(1), 249(2009)

19 P.He, Y.Gao, J.Lian, L.M.Wang, D.Qian, J.Zhao, W.Wang, M.J.Schulz, X.P.Zhou, D.L.Shi, Surface modification and ultrasonication effect on the mechanical properties of carbon nanofiber/polycarbonate composites, Composites Part a–Applied Science and Manufacturing, 37(9), 1270(2006)

20 D.L.Shi, Y.Guo, Z.Y.Dong, J.Lian, W.Wang, G.K.Liu, L.M.Wang, R.C.Ewing, Quantum–dot–activated luminescent carbon nanotubes via a nano scale surface functionalization

for in vivo imaging, Advanced Materials, 19(22), 4033(2007)

21 L.P.Peng, L.Fang, X.F.Yang, Y.J.Li, Q.L.Huang, F.Wu, C.Y.Kong, Effect of annealing temperature on the structure and optical properties of In–doped ZnO thin films, Journal of Alloys and Compounds, 484(1–2), 575(2009)

22 J.Zhang, L.D.Sun, H.Y.Pan, C.S.Liao, C.H.Yan, ZnO nanowires fabricated by a convenient route, New Journal of Chemistry, 26(1), 33(2002)

23 G.Xiong, U.Pal, J.G.Serrano, Correlations among size, defects, and photoluminescence in ZnO nanoparticles, Journal of Applied Physics, 101(2), 024317(2007)

24 R.O.Moussodia, L.Balan, R.Schneider, Synthesis and characterization of water–soluble ZnO quantum dots prepared through PEG–siloxane coating, New Journal of Chemistry, 32(8), 1388(2008)

25 B.Karthikeyan, C.S.S.Sandeep, R.Philip, M.L.Baesso, Study of optical properties and effective three–photon absorption in Bi–doped ZnO nanoparticles, Journal of Applied Physics, 106(11), 114304(2009)

26 S.Mandal, A.Dhar, S.K.Ray, Growth and photoluminescence characteristics of ZnO tripods, Journal of Applied Physics, 105(3), 033513(2009)

27 Z.Q.Li, Y.Xie, Y.J.Xiong, R.Zhang, A novel non–template solution approach to fabricate ZnO hollow spheres with a coordination polymer as a reactant, New Journal of Chemistry,

27(10), 1518(2003)

28 A.Glaria, M.L.Kahn, T.Cardinal, F.Senocq, V.Jubera, B.Chaudret, Lithium ion as growth–controlling agent of  ZnO nanoparticles prepared by organometallic synthesis, New Journal of Chemistry, 32(4), 662(2008)

29 Y.H.Tong, Y.C.Liu, S.X.Lu, L.Dong, S.J.Chen, Z.Y.Xiao, The optical properties of ZnO nanoparticles capped with polyvinyl butyral, Journal of Sol–Gel Science and Technology, 30(3), 157(2004)

30 G.G.Khan, N.Mukherjee, A.Mondal, N.R.Bandyopadhyay and A. Basumallick, Optical and field emission characteristics of anodic aluminium oxide/ZnO hybrid nanostructure, Materials Chemistry and Physics, 122(1), 60 (2010)

31 N.C.Das, S.Upreti, P.E.Sokol, Small angle neutron scattering and photoluminescence property of wet chemistry process synthesised ZnO nanoparticles, Journal of Experimental

Nanoscience, 5(2), 180(2010)

32 H.C.Zhu, J.Iqbal, H.J.Xu, D.P.Yu, Raman and photoluminescence properties of highly Cu doped ZnO nanowires fabricated by vapor–liquid–solid process, Journal of Chemical Physics, 129(12), 5(2008)

33 Q.J.Yu, W.Y.Fu, C.L.Yu, H.B.Yang, R.H.Wei, M.H.Li, S.K.Liu, Y.M.Sui, Z.L.Liu, M.X.Yuan, G.T.Zou, G.R.Wang, C.L.Shao, Y.C.Liu, Fabrication and optical properties of large–scale ZnO nanotube bundles via a simple solution route, Journal of Physical Chemistry C, 111(47), 17521(2007)

34 C.L.Yang, J.N.Wang, W.K.Ge, L.Guo, S.H.Yang, D.Z.Shen, Enhanced ultraviolet emission and optical properties in polyvinyl pyrrolidone surface modified ZnO quantum dots, Journal of Applied Physics, 90(9), 4489(2001)
[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[7] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[8] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[9] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[10] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[11] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[12] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[13] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
[14] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
[15] TAN Xi, SONG Yuzhe, SHI Xin, QIANG Jin, WEI Tingxuan, LU Qihai. Magnetization Reversal Field and Magneto-Resistor of Spin Valve[J]. 材料研究学报, 2020, 34(4): 272-276.
No Suggested Reading articles found!