Please wait a minute...
Chin J Mater Res  2010, Vol. 24 Issue (4): 444-448    DOI:
论文 Current Issue | Archive | Adv Search |
The Sintering Behavior and Microwave Dielectric Properties of Mg4Nb2O9/SrTiO3 Composite Ceramic
YAO Guoguang1,  IU Peng2,  MA Hong1,  TIAN Xiulao1
1.School of Science, Xi'an University of Post and Telecommunications, Xi'an 710121
2.College of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062
Cite this article: 

YAO Guoguang LIU Peng MA Hong TIAN Xiulao. The Sintering Behavior and Microwave Dielectric Properties of Mg4Nb2O9/SrTiO3 Composite Ceramic. Chin J Mater Res, 2010, 24(4): 444-448.

Download:  PDF(734KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effects of Li2CO3–V2O5 (LV) co-doped on the sinterability, phase compositions and microwave dielectric properties of 0.6Mg4Nb2O9– 0.4SrTiO3 composite ceramics were investigated. It is found that the densification sintering temperature of 0.6Mg4Nb2O9–0.4SrTiO3 is lowed to 1175℃ with an amount LV addtion. The second phases Sr(NbTi)O3+δ and MgO were confirmed by the XRD and EDX spectrum analysis. The specimens with 1.5% LV sintered at 1175℃ for 5 h shows excellent dielectric propertis: εr=20.1, Q · f=10240 GHz (at 8.5 GHz), τf=0.15 ppm/.

Key words:  inorganic non-metallic materials       Mg4Nb2O9-SrTiO3 composite ceramics       Li2CO3-V2O5 additives       microwave dielectric properties     
Received:  02 April 2010     
ZTFLH: 

TQ174

 
Fund: 

Supported by Natural Science Foundation of Shaanxi Province No.2009JM6001 and Department Education of of Shaanxi Province No. 09JK729.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2010/V24/I4/444

1 Huang C L, Chen J Y. High-Q Microwave Dielectrics in the (Mg1-xCox)2TiO4 Ceramics. J. Am. Ceram. Soc., 92(2), 379 (2009) 2 Prabhakaran S A, Mailadil T S. Microwave Dielectric Properties and Low-Temperature Sintering of Cerium Oxide for LTCC Applications. J. Am. Ceram. Soc., , 92(1), 96(2009) 3 Zhang Q L, Yang H, Sun H P. A new microwave ceramic with low-permittivity for LTCC applications. J. Eur. Ceram. Soc., , 28, 605(2008) 4 Akinori K, Hirotaka O. Low-temperature sintering and microstructure of Mg4(Nb2-xVx)O9 microwave dielectric ceramic by V substitution for Nb. Jpn. J. Appl.Phys., , 42, 6154(2003) 5 Dai S X, Huang R F, Wilcox D L.Use of titanates to achieve a temperature-stable low-temperature co-fired ceramic dielectric for wireless applications. J. Am. Ceram. Soc., 85, 828(2002) 6 Ogawa H, Kan A, Ishihara S. Crystal Structure of Corundum Type Mg4(Nb2-xTax)O9 Microwave Dielectric Ceramics with Low Dielectric Loss. J. Eur. Ceram.Soc., 23(14), 2485(2003) 7 Kan A., Ogawa H, Yokoi A. Sintering Temperature Dependence of Microwave Dielectric Properties in Mg4(TaNb1-xVx)O9 Compounds. Mater. Res. Bull., 41, 1178(2006) 8 Kan A, Ogawa H, Yokoi A. Crystal Structural Refinement of Corundum-Structured A4M2O9 (A=Co and Mg, M=Nb and Ta) Microwave Dielectric Ceramics by High-Temperature X-ray Powder Diffraction. J. Eur. Ceram. Soc., 27(8), 2977(2007) 9 Liu P, Su W A, Yao G G. The Sintering Behavior and Microwave Dielectric Properties of Mg4(Nb,Sb)O9 Ceramics. J. Electroceram, , 21, 478(2008) 10 Lim SW, Bang JJ. Microwave dielectric properties of Mg4Nb2O9 ceramics produced by hydrothermal synthesis. J. Electroceram., , 23, 116(2009) 11 Atsushi Y, Ogawa H, Kan A. Microwave dielectric properties of Mg4Nb2O9–3.0 wt% LiF ceramics prepared with CaTiO3 additions. J. Eur. Ceram.Soc., 25, 2871(2005) 12 Yao G G, Liu P. Low-temperature sintering and microwave dielectric properties of (1-x)Mg4Nb2O9-xCaTiO3 ceramics[J]. Physica B, , 405(2), 547(2010) 13 Huang C L, Wang J J, Chang Y P. Dielectric Properties of Low Loss (1–x)(Mg0.95Zn0.05)TiO3–xSrTiO3 Ceramic System at Microwave Frequency. J. Am. Ceram. Soc., 90(3), 858(2007) 14 Huang C L, Chen J Y, Chao C. Dielectric Properties of a New Ceramic System (1-x)Mg4Nb2O9-xCaTiO3 at Microwave Frequency. Mater. Res. Bull., 44, 1 111(2009) 15 Huang C L, Chen J Y, Chao C. Dielectric Properties and Mixture Behavior of Mg4Nb2O9-SrTiO3 Ceramic System at Microwave Frequency. J. Alloys. Compd., 471, 9(2009) 16 Liu P, Yao G G, Bian X. B. Low Temperature Sintering and microwave Dielectric Properties of Mg4Nb2O9 Ceramics. J. Electroceram., , 21, 149(2008) 17 Elcoro L, Perez-Mato J M, Withers R. A new superspace approach to the layered perovskite-related LanTin-δO3n and Srn(Nb,Ti)nO3n 2 compound series. Ferroelectrics, 250(1), 39(2001) 18 TatekawaT, Higuchi Y. Role of donor andacceptor ions in the dielectric loss tangent of (Zr0.8Sn0.2)TiO4 dielectric resonator material. J. Am. Ceram. Soc, 78(3), 793(1995) 19 Yoon S O, Yoon J H, Kim K S, et al. Microwave dielectric properties of LiNb3O8 ceramics with TiO2 additions. J. Eur Ceram Soc, 26(10–11), 2 031(2006) 20 Lei W, Lv W Z, Liu W D, et al. Phase Evolution and Microwave Dielectric Properties of (1-x)ZnAl2O4-xMg2TiO4 Ceramics. J. Am. Ceram. Soc. 92, 105(2009)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!