|
|
The Effects of Alternating Current on Deformation and Failure of 60 nm–thick Nanocrystalline Cu Lines |
ZHANG Jinyu; ZHAO Yi; LIU Gang; ZHANG Jing; SUN Jun |
State Key Laboratory for Mechanical Behavior of Materials; Xi'an Jiaotong University; XI'an 710049 |
|
Cite this article:
ZHANG Jinyu ZHAO Yi LIU Gang ZHANG Jing SUN Jun. The Effects of Alternating Current on Deformation and Failure of 60 nm–thick Nanocrystalline Cu Lines. Chin J Mater Res, 2010, 24(2): 129-136.
|
Abstract In this paper, the thermal fatigue properties of small scale copper structures on silicon substrate under cyclic thermo–mechanical loads introduced by alternating current have been investigated by in situ observation the evolution of fatigue damage. The effects of alternating current (AC) on the deformation and failure behavior of 60–nm–thick nanocrystalline (NC) Cu lines were studied. Experimental results revealed the current–density dependent failure mechanism of NC Cu lines. Under low current density condition, the failure process was dominated by stress controlled fatigue mechanism of grain extrusion. Under high current density condition, however, the failure mode was Joule–heating dominated thermal activated process.
|
Received: 17 December 2009
|
Fund: State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049 |
1 I.A.Blech. Electromigration in thin aluminum films on titanium nitride, J. Appl. Phys., 47, 1203(1976)
2 H.Okabayashi, Stress–induced void formation in metallization for integrated circuits, Mater. Sci. Eng. R, 11, 191(1993)
3 C.S.Hau–Riege. An introduction to Cu electromigration, Microelectron. Reliab., 44, 195(2004)
4 E.Misra, C.Marenco, N.D.Theodore, T.L.Alford, Failure mechanisms of silver and aluminum on titanium nitride under high current stress, Thin Solid Films, 474, 235(2005)
5 C.Hu.Reliability phenomena under AC stress, Microelectron. Reliab., 38, 1(1998)
6 R.M¨onig, R.R.Keller, C.A.Volkert, Thermal fatigue testing of thin metal films, Rev. Sci. Instrum., 75, 4997(2004)
7 R.M¨onig, Y.B.Park, C.A.Volkert, Thermal fatigue in copper interconnects. AIP Conference Proceedings, 817, 147(2006)
8 Y.B.Park, R.M¨onig, C.A.Volkert, Thermal fatigue as a possible failure mechanism in copper interconnects, Thin Solid Films, 504, 321(2006)
9 G.P.Zhang, C.A.Volkert, R.Schwaiger, R.M¨onig, O.Kraft, Fatigue and thermal fatigue damage analysis of thin metal films, Microelectron. Reliab., 47, 2007(2007)
10 J.Zhang, J.Y.Zhang, G.Liu, Y.Zhao, X.D.Ding, G.P.Zhang, J.Sun, Unusual thermal fatigue behaviors in 60 nm thick Cu interconnects, Scripta Mater., 60, 228(2009)
11 J.Zhang, Size effects on the fatigue behaviors in submicron thin copper films, PhD Dissertation, Xi'an Jiaotong University, 2008
12 E.Misra, N.D.Theodore, J.W.Mayer, T.L.Alford, Failure mechanisms of pure silver, pure aluminum and silver– aluminum alloy under high Current stress, Microelectron. Reliab., 46, 2096(2006)
13 S.J.Hwang, J.H.Lee, C.O.Jeong, Y.C.Joo, Effect of film thickness and annealing temperature on hillock distributions in pure Al films, Scripta Mater., 56, 17(2007)
14 S.H.Lee, D.Kwon, The analysis of thermal stress effect on electromigration failure time in Al alloy thin–film interconnects, Thin Solid Films 341 (1999) 136
15 D.K.Kim, W.D.Nix, R.P.VinciMichael, D.Deal, J.D.Plummer. Study of the effect of grain boundary migration on hillock formation in Al thin films, J. Appl. Phys., 90, 781(2001)
16 J.Schiøtz, K.W.Jacobsen, A Maximum in the Strength of Nanocrystalline Copper, Science, 301, 1357(2003)
17 S.P.Baker, A.Kretschmann, E.Arzt, Thermomechanical behavior of different texture components in Cu thin films, Acta Mater., 49, 2145(2001)
18 H.Van Swygenhoven, P.M.Derlet, A.G.Frøseth. Stacking fault energies and slip in nanocrystalline metals, Nat. Mater. 3, 399(2004)
19 G.Dehm, S.H.Oh, P.Gruber, M.Legros, F.D.Fischer, Strain compensation by twinning in Au thin films: Experiment and model, Acta Mater., 55, 6659(2007)
20 V.Yamakov, D.Wolf, S.R.Phillpot, A.K.Mukherjee, H.Gleiter, Deformation mechanism crossover and mechanicalbehaviour in nanocrystalline materials. Philos. Mag. Lett., 83, 385(2003)
21 V.Yamakov, D.Wolf, S.R.Phillpot, A.K.Mukherjee, H.Gleiter, Dislocation processes in the deformation of nanocrystalline aluminium by molecular–dynamics simulation, Nat. Mater., 1, 1(2002)
22 M.W.Chen, E.Ma, K.J.Hemker, H.W.Sheng, Y.M.Wang, X.M.Cheng, Deformation Twinning in Nanocrystalline Aluminum, Science, 300, 1275(2003)
23 J.Schiøtz, F.D.Di Tolla, K.W.Jacobsen. Softening of nanocrystalline metals at very small grain sizes, Nature, 391, 561(1998)
24 Z.W.Shan, E.A.Stach, J.M.K.Wiezorek, J.A.Knapp, D.M.Follstaedt, S.X.Mao, Grain Boundary-Mediated Plasticity in Nanocrystalline Nickel, Science, 305, 654(2004)
25 D.Pan, S.Kuwano, T.Fujita, M.W.Chen, Ultra–Large Room–Temperature Compressive Plasticity of a Nanocrystalline Metal, Nano. Lett., 7, 2018(2007)
26 X.L.Wu, E.Ma.Mater, Dislocations and twins in nanocrystalline Ni after severe plastic deformation: the effects of grain size, Sci. Eng. A., 483-484, 84(2008)
27 Z.Budrovic, H.Van Swygenhoven, P.M.Derlet, S.Van Petegem, B.Schmitt, Plastic Deformation with Reversible Peak Broadening in Nanocrystalline Nickel, Science, 304, 273(2004)
28 E.Arzt, Size effects in materials due to microstructural and dimensional constraints: a comparative review, Acta Mater., 46, 5611(1998)
29 C.X.Huang, K.Wang, S.D.Wu, Z.F.Zhang, G.Y.Li, S.X.Li, Deformation twinning in polycrystalline copper at room temperature and low strain rate, Acta Mater., 54, 655(2006)
30 H.Van Swygenhoven, M.Spaczer, A.Caro, D.Farkas, Competing plastic deformation mechanisms in nanophase metals, Phys. Rev. B, 60, 22(1999)
31 T.Shimokawa, A.Nakatani, H.Kitagawa, Grain–size dependence of the relationship between intergranular and intragranular deformation of nanocrystalline Al by molecular dynamics simulations, Phys. Rev. B, 71, 224110(2005)
32 B.N.Kim, K.Hiraga, K.Morita, Viscous grain–boundary sliding and grain rotation accommodated by grain– boundary diffusion, Acta Mater., 53, 1791(2005)
33 K.S.Kumar, H.Van Swygenhoven, S.Suresh, Mechanical behavior of nanocrystalline metals and alloys, Acta Mater., 51, 5743(2003)
34 F.ˇSiˇska, S.Forest, P.Gumbsch, Simulations of stressstrain heterogeneities in copper thin films: Texture and substrate effects, Computational Materials Science, 39, 137(2007)
35 X.Z.Liao, F.Zhou, E.J.Lavernia, S.G.Srinivasan, M.I.Baskes, D.W.He, Y.T.Zhu, Deformation mechanism in nanocrystalline Al: Partial dislocation slip, Appl. Phys. Lett. 83, 632 (2003)
36 X.Z.Liao, F.Zhou, E.J.Lavernia, D.W.He, Y.T.Zhu, Deformation twins in nanocrystalline Al, Appl. Phys. Lett., 83, 5062(2003)
37 D.Chocyk, A.Proszynski, G.Gladyszewski, Diffusional creep induced stress relaxation in thin Cu films on silicon, Microelectron. Eng., 85, 2179(2008)
38 S.J.Hwang, Y.D.Lee, Y.B.Park, J.H.Lee, C.O.Jeong, Y.C.Joo, In situ study of stress relaxation mechanisms of pure Al thin films during isothermal annealing, Scripta Mater., 54, 1841(2006) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|