Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (5): 389-400    DOI: 10.11901/1005.3093.2024.409
ARTICLES Current Issue | Archive | Adv Search |
Effect of Al Content on Corrosion and Discharge Properties of Extruded Mg-Al-Ca-Mn Alloys as Anode Material for Mg-air Batteries
QIU Wei, LI Yulin, YAN Rui, LI Yawen, CHEN Wei, GAN Lang(), REN Yanjie, CHEN Jian
School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410114, China
Cite this article: 

QIU Wei, LI Yulin, YAN Rui, LI Yawen, CHEN Wei, GAN Lang, REN Yanjie, CHEN Jian. Effect of Al Content on Corrosion and Discharge Properties of Extruded Mg-Al-Ca-Mn Alloys as Anode Material for Mg-air Batteries. Chinese Journal of Materials Research, 2025, 39(5): 389-400.

Download:  HTML  PDF(32296KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of Al content on the corrosion behavior and electrochemical performance of extruded Mg-Al-Ca-Mn alloy in 3.5%NaCl electrolyte was investigated. The results show that the AMX411 Mg-alloy exhibits excellent corrosion resistance and discharge performance. The measured hydrogen evolution results showed that the minimum hydrogen evolution and mass loss of AMX411 alloy during corrosion process for 72 h were (2.25 ± 0.07) mL·cm-2 and (2.83 ± 0.12) mg·cm-2, while the free corrosion potential (φcorr) and the corrosion current density (Jcorr) were -1.267 V and (67.9 ± 0.16) µA·cm-2 respectively,indicating its low electrochemical activity and best corrosion resistance. In addition, the results of a half-cell discharge test for 4 h revealed that AMX411 alloy maintained a negative and stable voltage regardless of the discharge current densities (5, 10, 20, and 30 mA·cm-2), and its discharge efficiency was as high as 61.36% and 65.35% at current densities 20 and 30 mA·cm-2, which was significantly better than that of AMX111 alloy (41.83% and 44.79%). The excellent performance of AMX411 alloy may be attributed to the existence of much smaller and uniformly distributed precipitations of Al-containing second phase, which effectively reduces the local potential difference and suppresses the micro galvanic corrosion effect, thus facilitating the best corrosion resistance, besides, it still exhibits high anode utilization under high current density, which are all favorable advantages for it to become the anode material for Mg-air batteries.

Key words:  metallic materials      Mg-Al-Ca-Mn alloy      Mg-air battery      corrosion behavior      electrochemical performance     
Received:  08 October 2024     
ZTFLH:  TG146.2  
Fund: National Natural Science Foundation of China(52171099);Hunan Provincial Department of Education Key Program(22A0240)
Corresponding Authors:  GAN Lang, Tel: 15111404604, E-mail: langgan@csust.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.409     OR     https://www.cjmr.org/EN/Y2025/V39/I5/389

Fig.1  Diagram of the hydrogen precipitation plant by immersion
Fig.2  OM diagram of extruded alloy (a) AMX011, (b) AMX111, (c) AMX211, (d) AMX311, (e) AMX411
Fig.3  SEM diagram of extruded alloy (a) AMX011, (b) AMX111, (c) AMX211, (d) AMX311, (e) AMX411
Fig.4  Hydrogen evolution volume (a) and total mass loss (b) of extruded alloys after immersion in 3.5%NaCl for 72 h
Alloyφcorr / VJcorr / µA·cm-2
AMX011-1.59180.5 ± 0.25
AMX111-1.533154.3 ± 0.64
AMX211-1.540133.5 ± 0.38
AMX311-1.56982.7 ± 0.21
AMX411-1.26767.9 ± 0.16
Table 1  Fitting data of potential dynamic polarization curve of extruded alloy
Fig.5  Nyquist (a), Bode (b) plots, and polarization curves (c) of AMX alloy in 3.5%NaCl solution, and equivalent circuit diagrams (d)
AlloyRs / Ω·cm2CPEdl / µF·cm-2Rct / Ω·cm2L / H·cm2RL / Ω·cm2
Cdln
AMX0116.8548.562 × 10-30.9489656.1537.6463.1
AMX1117.9563.543 × 10-20.556226.4291.157
AMX2116.8251.458 × 10-20.9223241.1110.356.85
AMX3117.5517.881 × 10-30.9454503.8263.4258.1
AMX4117.0418.052 × 10-30.9517760.2368.4581.2
Table 2  Fitting the EIS parameters of AMX alloys
Fig.6  Corrosion morphologies of alloys in extruded state with (a1~e1, a2~e2) and without corrosion (a3~e3, a4~e4) products after 3 h (a1~e1, a3~e3) and 24 h (a2~e2, a4~e4) immersion
Fig.7  Schematic corrosion mechanism of AMX alloy in 3.5%NaCl solution for different time
Fig.8  Constant current discharge curve of extruded alloy discharged in 3.5%NaCl for 4 h under the current density of 5 mA·cm-2 (a), 10 mA·cm-2 (b), 20 mA·cm-2 (c), and 30 mA·cm-2 (d)
ParametersDischarge current density / mA·cm-2AMX011AMX111AMX211AMX311AMX411
Average discharge potential / V5-1.617-1.553-1.557-1.567-1.581
10-1.563-1.503-1.519-1.538-1.547
20-1.477-1.387-1.408-1.437-1.442
30-1.402-1.289-1.310-1.319-1.345
Anode utilization / %543.3230.3633.4943.2744.39
1050.6435.0338.1447.2352.25
2059.7441.8343.6454.5661.36
3063.8244.7946.1558.9865.35
Table 3  Average discharge voltage and anode utilization rate of extruded alloy at different current densities for 4 h
Fig.9  Surface morphologies of extruded alloy without removal (a1~e1) and with removal of discharge products (a2~e2, a3~e3) after 4 h discharge at 20 mA·cm-2 (a) AMX011, (b) AMX111, (c) AMX211, (d) AMX311, (e) AMX411
1 Yang Y, Xiong X M, Chen J, et al. Research advances of magnesium and magnesium alloys worldwide in 2022 [J]. J. Magnes. Alloy., 2023, 11(8): 2611
2 She J, Chen J, Xiong X M, et al. Research advances of magnesium and magnesium alloys globally in 2023 [J]. J. Magnes. Alloy., 2024, 12(9): 3441
3 Kale A M, Lee S Y, Park S J. A comprehensive review of carbon-based air cathode materials for advanced non-aqueous lithium-air batteries [J]. Energy Storage Mater., 2024, 73: 103874
4 Sun W, Wang F, Zhang B, et al. A rechargeable zinc-air battery based on zinc peroxide chemistry [J]. Science, 2021, 371(6524): 46
doi: 10.1126/science.abb9554 pmid: 33384369
5 Yang H B, Wu L, Jiang B, et al. Clarifying the roles of grain boundary and grain orientation on the corrosion and discharge processes of α-Mg based Mg-Li alloys for primary Mg-air batteries [J]. J. Mater. Sci. Technol., 2021, 62: 128
6 Buckingham R, Asset T, Atanassov P. Aluminum-air batteries: A review of alloys, electrolytes and design [J]. J. Power Sources, 2021, 498: 229762
7 Ma J L, Ren F Z, Wang G X, et al. Electrochemical performance of melt-spinning Al-Mg-Sn based anode alloys [J]. Int. J. Hydrog. Energy, 2017, 42(16): 11654
8 Gudić S, Smoljko I, Kliškić M. The effect of small addition of tin and indium on the corrosion behavior of aluminium in chloride solution [J]. J. Alloy. Compd., 2010, 505(1): 54
9 Liu C Y, Luo T J, Li Y J, et al. Microstructure and properties of As-cast Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi alloys with high modulus [J]. Chin. J. Mater. Res., 2024, 38(3): 187
刘晨野, 罗天骄, 李应举 等. Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi高模量铸造镁合金的组织和性能 [J]. 材料研究学报, 2024, 38(3): 187
doi: 10.11901/1005.3093.2023.130
10 Liu Y, Kang R, Feng X H, et al. Microstructure and mechanical properties of extruded Mg-Alloy Mg-Al-Ca-Mn-Zn [J]. Chin. J. Mater. Res., 2022, 36(1): 13
doi: 10.11901/1005.3093.2021.249
刘 洋, 康 锐, 冯小辉 等. Mg-Al-Ca-Mn-Zn变形镁合金的组织和力学性能 [J]. 材料研究学报, 2022, 36(1): 13
11 Liu M, Zhang Q, Zhang X K, et al. A novel rechargeable Magnesium-Air battery using “All in one” Mg anode with high reversibility [J]. Chem. Eng. J., 2023, 472: 145154
12 Pan F S, Jiang B. Development and application of plastic processing technologies of magnesium alloys [J]. Acta Metall. Sin., 2021, 57(11): 1362
doi: 10.11900/0412.1961.2021.00349
潘复生, 蒋 斌. 镁合金塑性加工技术发展及应用 [J]. 金属学报, 2021, 57(11): 1362
doi: 10.11900/0412.1961.2021.00349
13 Kim H S, Jeong G, Kim Y U, et al. Metallic anodes for next generation secondary batteries [J]. Chem. Soc. Rev., 2013, 42(23): 9011
doi: 10.1039/c3cs60177c pmid: 23954955
14 Wu Y P, Wang Z F, Liu Y, et al. AZ61 and AZ61-La alloys as anodes for Mg-air battery [J]. J. Mater. Eng. Perform., 2019, 28(4): 2006
doi: 10.1007/s11665-019-03985-5
15 Chen X R, Jia Y H, Le Q C, et al. Discharge properties and electrochemical behaviors of AZ80-La-Gd magnesium anode for Mg-air battery [J]. J. Magnes. Alloy., 2021, 9(6): 2113
16 Li X D, Lu H M, Yuan S Q, et al. Performance of Mg-9Al-1In alloy as anodes for Mg-air batteries in 3.5 wt% NaCl solutions [J]. J. Electrochem. Soc., 2017, 164(13): A3131
17 Li Z Y, Wang H X, Li J J, et al. Synergistic effect of second phase and grain size on electrochemical discharge performance of extruded Mg-9Al-xIn alloys as anodes for Mg-air battery [J]. Adv. Eng. Mater., 2020, 22(3): 1901332
18 Feng Y, Lei G, He Y Q, et al. Discharge performance of Mg-Al-Pb-La anode for Mg-air battery [J]. Trans. Nonferrous Met. Soc. China, 2018, 28(11): 2274
19 Wang N G, Wang R C, Peng C Q, et al. Discharge behaviour of Mg-Al-Pb and Mg-Al-Pb-In alloys as anodes for Mg-air battery [J]. Electrochim. Acta, 2014, 149: 193
20 Feng Y, Xiong W H, Zhang J C, et al. Electrochemical discharge performance of the Mg-Al-Pb-Ce-Y alloy as the anode for Mg-air batteries [J]. J. Mater. Chem., 2016, 4A(22) : 8658
21 Xiang Q, Jiang B, Zhang Y X, et al. Effect of rolling-induced microstructure on corrosion behaviour of an as-extruded Mg-5Li-1Al alloy sheet [J]. Corros. Sci., 2017, 119: 14
22 Liu X, Liu S Z, Xue J L. Discharge performance of the magnesium anodes with different phase constitutions for Mg-air batteries [J]. J. Power Sources, 2018, 396: 667
23 Li C Q, Xu D K, Chen X B, et al. Composition and microstructure dependent corrosion behaviour of Mg-Li alloys [J]. Electrochim. Acta, 2018, 260: 55
24 Chen X R, Wang H N, Zou Q, et al. The influence of heat treatment on discharge and electrochemical properties of Mg-Gd-Zn magnesium anode with long period stacking ordered structure for Mg-air battery [J]. Electrochim. Acta, 2021, 367: 137518
25 Zhang C, Wu L, Huang G S, et al. Effect of microalloyed Ca on the microstructure and corrosion behavior of extruded Mg alloy AZ31 [J]. J. Alloy. Compd., 2020, 823: 153844
26 Yang J, Peng J, Nyberg E A, et al. Effect of Ca addition on the corrosion behavior of Mg-Al-Mn alloy [J]. Appl. Surf. Sci., 2016, 369: 92
27 Wu P P, Xu F J, Deng K K, et al. Effect of extrusion on corrosion properties of Mg-2Ca-χAl (χ = 0, 2, 3, 5) alloys [J]. Corros. Sci., 2017, 127: 280
28 Gu D D, Wang J W, Chen Y B, et al. Effect of Mn addition and refining process on Fe reduction of Mg-Mn alloys made from magnesium scrap [J]. Trans. Nonferrous Met. Soc. China, 2020, 30(11): 2941
29 Yang L, He S Z, Yang C, et al. Mechanism of Mn on inhibiting Fe-caused magnesium corrosion [J]. J. Magnes. Alloy., 2021, 9(2): 676
doi: 10.1016/j.jma.2020.09.015
30 Xiong H Q, Yu K, Yin X, et al. Effects of microstructure on the electrochemical discharge behavior of Mg-6wt%Al-1wt%Sn alloy as anode for Mg-air primary battery [J]. J. Alloy. Compd., 2017, 708: 652
31 Du B D, Liu J, Wang X W, et al. Effect of heat treatment on microstructure and Al-water reactivity of Al-Mg-Ga-In-Sn alloys [J]. Chin. J. Mater. Res., 2021, 35(1): 25
doi: 10.11901/1005.3093.2020.080
杜邦登, 刘 军, 王晓婉 等. 热处理对Al-Mg-Ga-In-Sn合金微观结构和铝水反应的影响 [J]. 材料研究学报, 2021, 35(1): 25
doi: 10.11901/1005.3093.2020.080
32 Zhen R, Wu Z, Xu H Y, et al. Microstructures and mechanical properties of Mg-13Gd-1Zn alloy [J]. Chin. J. Mater. Res., 2020, 34(3): 225
doi: 10.11901/1005.3093.2019.364
甄 睿, 吴 震, 许恒源 等. Mg-13Gd-1Zn合金的组织与力学性能 [J]. 材料研究学报, 2020, 34(3): 225
33 Liu H, Yan Y, Wu X H, et al. Effects of Al and Sn on microstructure, corrosion behavior and electrochemical performance of Mg-Al-based anodes for magnesium-air batteries [J]. J. Alloy. Compd., 2021, 859: 157755
34 Tong F L, Chen X Z, Wang Q, et al. Hypoeutectic Mg-Zn binary alloys as anode materials for magnesium-air batteries [J]. J. Alloy. Compd., 2021, 857: 157579
35 Zhang J H, Zhang H F, Zhang Y G, et al. Approaches to construct high-performance Mg-air batteries: from mechanism to materials design [J]. J. Mater. Chem., 2023, 11A(15) : 7924
36 Bao J X, Sha J C, Li L H, et al. Electrochemical properties and discharge performance of Mg-3Sn-xCa alloy as a novel anode for Mg-air battery [J]. J. Alloy. Compd., 2023, 934: 167849
37 Liu H X, Zhang T G, Xu J Z. Discharge properties and electrochemical behaviors of Mg-Zn-xSr magnesium anodes for Mg-Air batteries [J]. Materials, 2024, 17(17): 4179
38 Wang N G, Mu Y C, Xiong W H, et al. Effect of crystallographic orientation on the discharge and corrosion behaviour of AP65 magnesium alloy anodes [J]. Corros. Sci., 2018, 144: 107
39 Liang J, Srinivasan P B, Blawert C, et al. Influence of chloride ion concentration on the electrochemical corrosion behaviour of plasma electrolytic oxidation coated AM50 magnesium alloy [J]. Electrochim. Acta, 2010, 55(22): 6802
40 Sun Y H, Wang R C, Peng C Q, et al. Microstructure and corrosion behavior of as-extruded Mg-xLi-3Al-2Zn-0.2Zr alloys (x = 5, 8, 11 wt.%) [J]. Corros. Sci., 2020, 167: 108487
41 Alateyah A I, Aljohani T A, Alawad M O, et al. Improved corrosion behavior of AZ31 alloy through ECAP processing [J]. Metals, 2021, 11(2): 363
42 Qiu W, Yan R, Liu K D, et al. The semi-continuous (Mg,Al)2Ca second phase on Mg-Al-Ca-Mn alloys as an efficient anti-corrosion anode for Mg-air batteries [J]. J. Alloy. Compd., 2024, 990: 174387
43 Zhang T R, Tao Z L, Chen J. Magnesium-air batteries: from principle to application [J]. Mater. Horiz., 2014, 1(2): 196
44 Zhang J R, Liu M L, Qi J C, et al. Advanced Mg-based materials for energy storage: fundamental, progresses, challenges and perspectives [J]. Prog. Mater. Sci., 2025, 148: 101381
[1] LI Haibin, XU Huiting, TANG Wei, LV Haibo, SHUAI Meirong. Electrolytic Polishing Capillary Effect Reaction Mechanism Research on Bonding Interface of Hot Rolled Carbon Steel / Stainless Steel[J]. 材料研究学报, 2025, 39(5): 362-370.
[2] WU Yucheng, ZUO Tong, TAN Xiaoyue, ZHU Xiaoyong, LIU Jiaqin. Oxidation Behavior of Self-passivated W-Cr-Zr Alloys as the First Wall Candidate Material[J]. 材料研究学报, 2025, 39(5): 343-352.
[3] CHEN Shiyu, LI Wei, KUANG Haiyan, GAO Shaowei, PANG Dongfang. Dielectric-, Ferroelectric- and Piezoelectric-property of Lu3+ Doped 0.67BiFeO3-0.33BaTiO3 Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2025, 39(4): 272-280.
[4] XU Congmin, SUN Shuwen, ZHU Wensheng, CHEN Zhiqiang, LI Chengchen. Influence of Ternary Compound Biocides on Corrosion Behavior of P110 Steel[J]. 材料研究学报, 2025, 39(4): 281-288.
[5] FU Chunguo, XU Shiwei, YANG Xiaoyi, LI Mengnie. Effect of Welding Heat Source Mode on Microstructure and Properties of Weld Joints for 5083-H111 Al-alloy[J]. 材料研究学报, 2025, 39(4): 305-313.
[6] RAN Zizuo, ZHANG Shuang, SU Zhaoyi, WANG Yang, ZOU Cunlei, ZHAO Yajun, WANG Zengrui, JIANG Weiwei, DONG Chenxi, DONG Chuang. Cluster-formula-based Composition Optimization of 316 Stainless Steel and Its Experimental Verification[J]. 材料研究学报, 2025, 39(3): 207-216.
[7] ZHANG Huifang, WU Hao, XIAO Chuanmin, LI Qi, XIE Jun, LI Jinguo, WANG Zhenjiang, YU Jinjiang. Effect of Heat Treatment on Microstructure and Tensile Properties of a Typical γʹ-strengthened Co-based Superalloy[J]. 材料研究学报, 2025, 39(3): 198-206.
[8] HU Pengqin, WANG Dong, LU Yuzhang, ZHANG Jian. Effect of Thermal Processes on Creep Properties of a Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2025, 39(3): 161-171.
[9] ZHONG Weijie, JIAO Dongling, LIU Zhongwu, LIU Na, XU Wenyong, LI Zhou, ZHANG Guoqing. High Temperature Oxidation of a HIPed Nickel-based Superalloy[J]. 材料研究学报, 2025, 39(3): 172-184.
[10] YU Xingfu, XI Keyu, ZHANG Hongwei, WANG Quanzhen, HAO Tianci, ZHENG Dongyue, SU Yong. Effect of Post-diffusion Treatment on Microstructure and Properties of Plasma Nitriding 7Cr7Mo2V2Si Cold Work Mold Steel[J]. 材料研究学报, 2025, 39(3): 225-232.
[11] WU Xiaoqi, WAN Hongjiang, MING Hongliang, WANG Jianqiu, KE Wei, HAN En-Hou. Effect of Compression Rate on Hydrogen Embrittlement Sensitivity of X65 Pipeline Steel Based on in-situ Small Punch Test[J]. 材料研究学报, 2025, 39(2): 92-102.
[12] MA Xiuge, WU Qinghui, PANG Jianchao, LIU Zengqian, LI Shouxin, LUO Kailun, ZHANG Zhefeng. Effect of Grain Boundary Misorientation on Tensile Properties of Bi-crystal Superalloy at Ambient and High Temperatures[J]. 材料研究学报, 2025, 39(2): 81-91.
[13] YUAN Hongyuan, ZHANG Siqian, WANG Dong, ZHANG Yingjian, MA Li, YU Minghan, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Long-term Thermal Exposure on Microstructure Evolution of Interface Thermal Barrier Coating/DZ411 Ni-based Superalloy[J]. 材料研究学报, 2025, 39(2): 113-125.
[14] XU Congmin, LI Xueli, FU Anqing, SUN Shuwen, CHEN Zhiqiang, LI Chengchen. Effect of Compound Bactericidal Corrosion Inhibitor on Corrosion Behavior of N80 Steel at Different Temperatures[J]. 材料研究学报, 2025, 39(2): 145-152.
[15] MU Chunhao, CHEN Wenge, YU Tianliang, MA Jiangjiang. Interface Microstructure and Properties of TA2/Q345 Composite Pipes Prepared by Hot Assembling and Diffusion Welding[J]. 材料研究学报, 2025, 39(1): 35-43.
No Suggested Reading articles found!