|
|
Effect of Al Content on Corrosion and Discharge Properties of Extruded Mg-Al-Ca-Mn Alloys as Anode Material for Mg-air Batteries |
QIU Wei, LI Yulin, YAN Rui, LI Yawen, CHEN Wei, GAN Lang( ), REN Yanjie, CHEN Jian |
School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410114, China |
|
Cite this article:
QIU Wei, LI Yulin, YAN Rui, LI Yawen, CHEN Wei, GAN Lang, REN Yanjie, CHEN Jian. Effect of Al Content on Corrosion and Discharge Properties of Extruded Mg-Al-Ca-Mn Alloys as Anode Material for Mg-air Batteries. Chinese Journal of Materials Research, 2025, 39(5): 389-400.
|
Abstract The effect of Al content on the corrosion behavior and electrochemical performance of extruded Mg-Al-Ca-Mn alloy in 3.5%NaCl electrolyte was investigated. The results show that the AMX411 Mg-alloy exhibits excellent corrosion resistance and discharge performance. The measured hydrogen evolution results showed that the minimum hydrogen evolution and mass loss of AMX411 alloy during corrosion process for 72 h were (2.25 ± 0.07) mL·cm-2 and (2.83 ± 0.12) mg·cm-2, while the free corrosion potential (φcorr) and the corrosion current density (Jcorr) were -1.267 V and (67.9 ± 0.16) µA·cm-2 respectively,indicating its low electrochemical activity and best corrosion resistance. In addition, the results of a half-cell discharge test for 4 h revealed that AMX411 alloy maintained a negative and stable voltage regardless of the discharge current densities (5, 10, 20, and 30 mA·cm-2), and its discharge efficiency was as high as 61.36% and 65.35% at current densities 20 and 30 mA·cm-2, which was significantly better than that of AMX111 alloy (41.83% and 44.79%). The excellent performance of AMX411 alloy may be attributed to the existence of much smaller and uniformly distributed precipitations of Al-containing second phase, which effectively reduces the local potential difference and suppresses the micro galvanic corrosion effect, thus facilitating the best corrosion resistance, besides, it still exhibits high anode utilization under high current density, which are all favorable advantages for it to become the anode material for Mg-air batteries.
|
Received: 08 October 2024
|
|
Fund: National Natural Science Foundation of China(52171099);Hunan Provincial Department of Education Key Program(22A0240) |
Corresponding Authors:
GAN Lang, Tel: 15111404604, E-mail: langgan@csust.edu.cn
|
1 |
Yang Y, Xiong X M, Chen J, et al. Research advances of magnesium and magnesium alloys worldwide in 2022 [J]. J. Magnes. Alloy., 2023, 11(8): 2611
|
2 |
She J, Chen J, Xiong X M, et al. Research advances of magnesium and magnesium alloys globally in 2023 [J]. J. Magnes. Alloy., 2024, 12(9): 3441
|
3 |
Kale A M, Lee S Y, Park S J. A comprehensive review of carbon-based air cathode materials for advanced non-aqueous lithium-air batteries [J]. Energy Storage Mater., 2024, 73: 103874
|
4 |
Sun W, Wang F, Zhang B, et al. A rechargeable zinc-air battery based on zinc peroxide chemistry [J]. Science, 2021, 371(6524): 46
doi: 10.1126/science.abb9554
pmid: 33384369
|
5 |
Yang H B, Wu L, Jiang B, et al. Clarifying the roles of grain boundary and grain orientation on the corrosion and discharge processes of α-Mg based Mg-Li alloys for primary Mg-air batteries [J]. J. Mater. Sci. Technol., 2021, 62: 128
|
6 |
Buckingham R, Asset T, Atanassov P. Aluminum-air batteries: A review of alloys, electrolytes and design [J]. J. Power Sources, 2021, 498: 229762
|
7 |
Ma J L, Ren F Z, Wang G X, et al. Electrochemical performance of melt-spinning Al-Mg-Sn based anode alloys [J]. Int. J. Hydrog. Energy, 2017, 42(16): 11654
|
8 |
Gudić S, Smoljko I, Kliškić M. The effect of small addition of tin and indium on the corrosion behavior of aluminium in chloride solution [J]. J. Alloy. Compd., 2010, 505(1): 54
|
9 |
Liu C Y, Luo T J, Li Y J, et al. Microstructure and properties of As-cast Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi alloys with high modulus [J]. Chin. J. Mater. Res., 2024, 38(3): 187
|
|
刘晨野, 罗天骄, 李应举 等. Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi高模量铸造镁合金的组织和性能 [J]. 材料研究学报, 2024, 38(3): 187
doi: 10.11901/1005.3093.2023.130
|
10 |
Liu Y, Kang R, Feng X H, et al. Microstructure and mechanical properties of extruded Mg-Alloy Mg-Al-Ca-Mn-Zn [J]. Chin. J. Mater. Res., 2022, 36(1): 13
doi: 10.11901/1005.3093.2021.249
|
|
刘 洋, 康 锐, 冯小辉 等. Mg-Al-Ca-Mn-Zn变形镁合金的组织和力学性能 [J]. 材料研究学报, 2022, 36(1): 13
|
11 |
Liu M, Zhang Q, Zhang X K, et al. A novel rechargeable Magnesium-Air battery using “All in one” Mg anode with high reversibility [J]. Chem. Eng. J., 2023, 472: 145154
|
12 |
Pan F S, Jiang B. Development and application of plastic processing technologies of magnesium alloys [J]. Acta Metall. Sin., 2021, 57(11): 1362
doi: 10.11900/0412.1961.2021.00349
|
|
潘复生, 蒋 斌. 镁合金塑性加工技术发展及应用 [J]. 金属学报, 2021, 57(11): 1362
doi: 10.11900/0412.1961.2021.00349
|
13 |
Kim H S, Jeong G, Kim Y U, et al. Metallic anodes for next generation secondary batteries [J]. Chem. Soc. Rev., 2013, 42(23): 9011
doi: 10.1039/c3cs60177c
pmid: 23954955
|
14 |
Wu Y P, Wang Z F, Liu Y, et al. AZ61 and AZ61-La alloys as anodes for Mg-air battery [J]. J. Mater. Eng. Perform., 2019, 28(4): 2006
doi: 10.1007/s11665-019-03985-5
|
15 |
Chen X R, Jia Y H, Le Q C, et al. Discharge properties and electrochemical behaviors of AZ80-La-Gd magnesium anode for Mg-air battery [J]. J. Magnes. Alloy., 2021, 9(6): 2113
|
16 |
Li X D, Lu H M, Yuan S Q, et al. Performance of Mg-9Al-1In alloy as anodes for Mg-air batteries in 3.5 wt% NaCl solutions [J]. J. Electrochem. Soc., 2017, 164(13): A3131
|
17 |
Li Z Y, Wang H X, Li J J, et al. Synergistic effect of second phase and grain size on electrochemical discharge performance of extruded Mg-9Al-xIn alloys as anodes for Mg-air battery [J]. Adv. Eng. Mater., 2020, 22(3): 1901332
|
18 |
Feng Y, Lei G, He Y Q, et al. Discharge performance of Mg-Al-Pb-La anode for Mg-air battery [J]. Trans. Nonferrous Met. Soc. China, 2018, 28(11): 2274
|
19 |
Wang N G, Wang R C, Peng C Q, et al. Discharge behaviour of Mg-Al-Pb and Mg-Al-Pb-In alloys as anodes for Mg-air battery [J]. Electrochim. Acta, 2014, 149: 193
|
20 |
Feng Y, Xiong W H, Zhang J C, et al. Electrochemical discharge performance of the Mg-Al-Pb-Ce-Y alloy as the anode for Mg-air batteries [J]. J. Mater. Chem., 2016, 4A(22) : 8658
|
21 |
Xiang Q, Jiang B, Zhang Y X, et al. Effect of rolling-induced microstructure on corrosion behaviour of an as-extruded Mg-5Li-1Al alloy sheet [J]. Corros. Sci., 2017, 119: 14
|
22 |
Liu X, Liu S Z, Xue J L. Discharge performance of the magnesium anodes with different phase constitutions for Mg-air batteries [J]. J. Power Sources, 2018, 396: 667
|
23 |
Li C Q, Xu D K, Chen X B, et al. Composition and microstructure dependent corrosion behaviour of Mg-Li alloys [J]. Electrochim. Acta, 2018, 260: 55
|
24 |
Chen X R, Wang H N, Zou Q, et al. The influence of heat treatment on discharge and electrochemical properties of Mg-Gd-Zn magnesium anode with long period stacking ordered structure for Mg-air battery [J]. Electrochim. Acta, 2021, 367: 137518
|
25 |
Zhang C, Wu L, Huang G S, et al. Effect of microalloyed Ca on the microstructure and corrosion behavior of extruded Mg alloy AZ31 [J]. J. Alloy. Compd., 2020, 823: 153844
|
26 |
Yang J, Peng J, Nyberg E A, et al. Effect of Ca addition on the corrosion behavior of Mg-Al-Mn alloy [J]. Appl. Surf. Sci., 2016, 369: 92
|
27 |
Wu P P, Xu F J, Deng K K, et al. Effect of extrusion on corrosion properties of Mg-2Ca-χAl (χ = 0, 2, 3, 5) alloys [J]. Corros. Sci., 2017, 127: 280
|
28 |
Gu D D, Wang J W, Chen Y B, et al. Effect of Mn addition and refining process on Fe reduction of Mg-Mn alloys made from magnesium scrap [J]. Trans. Nonferrous Met. Soc. China, 2020, 30(11): 2941
|
29 |
Yang L, He S Z, Yang C, et al. Mechanism of Mn on inhibiting Fe-caused magnesium corrosion [J]. J. Magnes. Alloy., 2021, 9(2): 676
doi: 10.1016/j.jma.2020.09.015
|
30 |
Xiong H Q, Yu K, Yin X, et al. Effects of microstructure on the electrochemical discharge behavior of Mg-6wt%Al-1wt%Sn alloy as anode for Mg-air primary battery [J]. J. Alloy. Compd., 2017, 708: 652
|
31 |
Du B D, Liu J, Wang X W, et al. Effect of heat treatment on microstructure and Al-water reactivity of Al-Mg-Ga-In-Sn alloys [J]. Chin. J. Mater. Res., 2021, 35(1): 25
doi: 10.11901/1005.3093.2020.080
|
|
杜邦登, 刘 军, 王晓婉 等. 热处理对Al-Mg-Ga-In-Sn合金微观结构和铝水反应的影响 [J]. 材料研究学报, 2021, 35(1): 25
doi: 10.11901/1005.3093.2020.080
|
32 |
Zhen R, Wu Z, Xu H Y, et al. Microstructures and mechanical properties of Mg-13Gd-1Zn alloy [J]. Chin. J. Mater. Res., 2020, 34(3): 225
doi: 10.11901/1005.3093.2019.364
|
|
甄 睿, 吴 震, 许恒源 等. Mg-13Gd-1Zn合金的组织与力学性能 [J]. 材料研究学报, 2020, 34(3): 225
|
33 |
Liu H, Yan Y, Wu X H, et al. Effects of Al and Sn on microstructure, corrosion behavior and electrochemical performance of Mg-Al-based anodes for magnesium-air batteries [J]. J. Alloy. Compd., 2021, 859: 157755
|
34 |
Tong F L, Chen X Z, Wang Q, et al. Hypoeutectic Mg-Zn binary alloys as anode materials for magnesium-air batteries [J]. J. Alloy. Compd., 2021, 857: 157579
|
35 |
Zhang J H, Zhang H F, Zhang Y G, et al. Approaches to construct high-performance Mg-air batteries: from mechanism to materials design [J]. J. Mater. Chem., 2023, 11A(15) : 7924
|
36 |
Bao J X, Sha J C, Li L H, et al. Electrochemical properties and discharge performance of Mg-3Sn-xCa alloy as a novel anode for Mg-air battery [J]. J. Alloy. Compd., 2023, 934: 167849
|
37 |
Liu H X, Zhang T G, Xu J Z. Discharge properties and electrochemical behaviors of Mg-Zn-xSr magnesium anodes for Mg-Air batteries [J]. Materials, 2024, 17(17): 4179
|
38 |
Wang N G, Mu Y C, Xiong W H, et al. Effect of crystallographic orientation on the discharge and corrosion behaviour of AP65 magnesium alloy anodes [J]. Corros. Sci., 2018, 144: 107
|
39 |
Liang J, Srinivasan P B, Blawert C, et al. Influence of chloride ion concentration on the electrochemical corrosion behaviour of plasma electrolytic oxidation coated AM50 magnesium alloy [J]. Electrochim. Acta, 2010, 55(22): 6802
|
40 |
Sun Y H, Wang R C, Peng C Q, et al. Microstructure and corrosion behavior of as-extruded Mg-xLi-3Al-2Zn-0.2Zr alloys (x = 5, 8, 11 wt.%) [J]. Corros. Sci., 2020, 167: 108487
|
41 |
Alateyah A I, Aljohani T A, Alawad M O, et al. Improved corrosion behavior of AZ31 alloy through ECAP processing [J]. Metals, 2021, 11(2): 363
|
42 |
Qiu W, Yan R, Liu K D, et al. The semi-continuous (Mg,Al)2Ca second phase on Mg-Al-Ca-Mn alloys as an efficient anti-corrosion anode for Mg-air batteries [J]. J. Alloy. Compd., 2024, 990: 174387
|
43 |
Zhang T R, Tao Z L, Chen J. Magnesium-air batteries: from principle to application [J]. Mater. Horiz., 2014, 1(2): 196
|
44 |
Zhang J R, Liu M L, Qi J C, et al. Advanced Mg-based materials for energy storage: fundamental, progresses, challenges and perspectives [J]. Prog. Mater. Sci., 2025, 148: 101381
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|