Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (4): 289-295    DOI: 10.11901/1005.3093.2024.403
ARTICLES Current Issue | Archive | Adv Search |
Electromagnetic Shielding Performance of MXene@Carbon Fiber Felt Composite Films
SUN Bo1, ZHANG Tianyu2,3, ZHAO Qiangqiang2,3, WANG Han2,3, TONG Yu1(), ZENG You2,3()
1.School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

SUN Bo, ZHANG Tianyu, ZHAO Qiangqiang, WANG Han, TONG Yu, ZENG You. Electromagnetic Shielding Performance of MXene@Carbon Fiber Felt Composite Films. Chinese Journal of Materials Research, 2025, 39(4): 289-295.

Download:  HTML  PDF(13143KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Development of lightweight, flexible, and high-efficiency electromagnetic shielding films is urgently required for practical application for wearable devices, thin-film electronics, and miniaturized equipment. In order to significantly enhance the electrical conductivity and electromagnetic shielding effectiveness (EMI SE) of carbon fiber felts (CFFs), MXene nanosheets were well dispersed in ethanol aqueous solutions and then spray-deposited onto CFF surfaces to fabricate MXene@CFF composite films. The effect of MXene deposition on the micromorphology, electrical conductivity and EMI SE of the composite films was investigated in detail. The results showed that the incorporation of MXene could significantly improve the EMI shielding performance. The surface electrical resistivity of the composite films with 2.37% (mass fraction) MXene decreased from 9.3 Ω/sq to 2.7 Ω/sq, while the EMI SE in the range of 8.2~12.4 GHz (X-band) increased to 57.9 dB, increasing by 27.8% in comparison with that of the bare CFFs. This performance improvement may mainly be attributed to the enhanced electrical conductivity of MXene-coated CFFs, the hierarchical porous structure, and the increased multiple reflection and absorption at multi-component interfaces.

Key words:  composite      electromagnetic shielding performance      electrical conductivity      MXene      carbon fiber felt     
Received:  30 September 2024     
ZTFLH:  TB332  
Fund: National Natural Science Foundation of China(52472056);National Natural Science Foundation of China(52130209);Applied Basic Research Program of Liaoning Province(2023JH26/10300015);Liaoning Natural Science Foundation(22-KF-12-04);Opening Foundation of Shanxi Key Laboratory of Nano & Functional Composite Materials(NFCM202102);Shenyang Science and Technology Project(22-316-1-04)
Corresponding Authors:  ZENG You, Tel: (024)83978090, E-mail: yzeng@imr.ac.cn;
TONG Yu, Tel: (024)24690300, E-mail: tong_yu123@hotmail.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.403     OR     https://www.cjmr.org/EN/Y2025/V39/I4/289

Fig.1  Fabrication schematics (a), SEM (b), XRD (c), and EDS images (d, e) of the MXene@CFF composite films
Fig.2  SEM images of MXene@CFF composite films with MXene loadings of 0 (a), 0.82% (b), 1.22% (c), and 2.37% (d)
Fig.3  Surface electrical resistivity of MXene@CFF composite films
Fig.4  Total (a), reflection (b), and absorption (c) shielding effectiveness, and the corresponding reflection and absorption coefficients (d) of MXene@CFF composite films in the range of 8.2~12.4 GHz
Fig.5  Mechanism schematics on electromagnetic shielding of MXene@CFF composite films
1 Liang J Y, Gu Y Z, Bai M, et al. Electromagnetic shielding property of carbon fiber felt made of different types of short-chopped carbon fibers [J]. Composites, 2019, 121: 289
2 Han W D, Qian X, Ma H B, et al. Effect of nickel electroplating followed by a further copper electroplating on the micro-structure and mechanical properties of high modulus carbon fibers [J]. Mater. Today Commun., 2021, 27: 102345
3 Pancrecious J K, Ulaeto S B, Ramya R, et al. Metallic composite coatings by electroless technique-a critical review [J]. Int. Mater. Rev., 2018, 63: 488
4 Zhang J J, Liu S C, Liu J M, et al. Electroless nickel plating and spontaneous infiltration behavior of woven carbon fibers [J]. Mater. Des., 2020, 186: 108301
5 Szadkowski B, Marzec A, Zaborski M. Use of carbon black as a reinforcing Nano-filler in conductivity-reversible elastomer composites [J]. Polym. Test., 2020, 81: 106222
6 Duan H J, Zhu H X, Yang J M, et al. Effect of carbon nanofiller dimension on synergistic EMI shielding network of epoxy/metal conductive foams [J]. Composites, 2019, 118A: 41
7 Im H, Kim J. Enhancement of electrical and thermal conductivities of a polysiloxane/metal complex with metal oxides [J]. Polym. Compos., 2010, 31: 1669
8 Niu Y F, Zhang Y X, Yao J W, et al. Improving resistance-strain effects of conductive polymer composites modified by multiscale fillers: Short carbon fiber and carbon nanotube [J]. Polym. Compos., 2024, 45: 5839
9 Kim W J, Nam K W, Kang B H, et al. Piezoresistive Effect of conductive and non-conductive fillers in bi-layer hybrid CNT composites under extreme strain [J]. Materials (Basel), 2023, 16: 6335
10 Capezza A, Andersson R L, Ström V, et al. Preparation and comparison of reduced graphene oxide and carbon nanotubes as fillers in conductive natural rubber for flexible electronics [J]. ACS Omega, 2019, 4: 3458
doi: 10.1021/acsomega.8b03630 pmid: 31459561
11 Radzuan N A M, Zakaria M Y, Sulong A B, et al. The effect of milled carbon fibre filler on electrical conductivity in highly conductive polymer composites [J]. Composites, 2017, 110B: 153
12 Kim J, Al-Rub R K A, Han S M, et al. High-resilience conductive PVA+AgNW/PDMS nanocomposite via directional freeze-drying [J]. Extreme Mech. Lett., 2024, 68: 102132
13 Khan J, Mariatti M. Effect of natural surfactant on the performance of reduced graphene oxide conductive ink [J]. J. Cleaner Prod., 2022, 376: 134254
14 Huang J L, Zhao X W, Wu Y, et al. Facile green path to interconnected Nano-graphite networks to overtake graphene as conductive fillers [J]. Carbon, 2021, 173: 667
15 Gao W W, Zhao N F, Yu T, et al. High-efficiency electromagnetic interference shielding realized in nacre-mimetic graphene/polymer composite with extremely low graphene loading [J]. Carbon, 2020, 157: 570
16 Cho K M, So Y, Choi S E, et al. Highly conductive polyimide nanocomposite prepared using a graphene oxide liquid crystal scaffold [J]. Carbon, 2020, 169: 155
17 Han X, Wang T, Owuor P S, et al. Ultra-Stiff graphene foams as three-dimensional conductive fillers for epoxy resin [J]. ACS Nano, 2018, 12: 11219
doi: 10.1021/acsnano.8b05822 pmid: 30408411
18 Ji Y C, Liu S H, Zhang T Y, et al. Research progress of MXene used in lithium sulfur battery [J]. Chin. J. Mater. Res., 2023, 37: 481
doi: 10.11901/1005.3093.2022.360
季雨辰, 刘树和, 张天宇 等. MXene在锂硫电池中应用的研究进展 [J]. 材料研究学报, 2023, 37: 481
doi: 10.11901/1005.3093.2022.360
19 Liu Z S. Preparation of ultrastrong and highly conductive Mxene-based film for electromagnetic interference shielding [D]. Beijing: Beijing University of Chemical Technology, 2021
刘张硕. 高强高导电MXene基电磁屏蔽薄膜的制备 [D]. 北京: 北京化工大学, 2021
20 Gogotsi Y, Anasori B. The rise of MXenes [J]. ACS Nano, 2019, 13: 8491
doi: 10.1021/acsnano.9b06394 pmid: 31454866
21 Li Q Y, Liu M L, Zhong B C, et al. Tetramethylammonium hydroxide modified MXene as a functional nanofiller for electrical and thermal conductive rubber composites [J]. Compos. Commun., 2022, 34: 101249
22 Guo Z J, Lu W B, Zhang Y, et al. MXene fillers and silver flakes filled epoxy resin for new hybrid conductive adhesives [J]. Ceram. Int., 2023, 49: 12054
23 Li Q Y, Zhong B C, Zhang W Q, et al. Ti3C2 MXene as a new nanofiller for robust and conductive elastomer composites [J]. Nanoscale, 2019, 11: 14712
24 Liu R, Li J M, Li M, et al. MXene-coated air-permeable pressure-sensing fabric for smart wear [J]. ACS Appl. Mater. Interfaces, 2020, 12: 46446
25 Hu Y, Chen J Z, Yang G Y, et al. Highly conductive and mechanically robust MXene@CF core-shell composites for in-situ damage sensing and electromagnetic interference shielding [J]. Compos. Sci. Technol., 2024, 246: 110356
26 Duan N M, Shi Z Y, Wang Z H, et al. Mechanically robust Ti3C2T x MXene/carbon fiber fabric/thermoplastic polyurethane composite for efficient electromagnetic interference shielding applications [J]. Mater. Des., 2022, 214: 110382
27 Song C Q, Yin X W, Han M K, et al. Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties [J]. Carbon, 2017, 116: 50
28 Wu Y, Wang Z Y, Liu X, et al. Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding [J]. ACS Appl. Mater. Interfaces, 2017, 9: 9059
29 Ma H Y, Zhang X T, Yang L, et al. Electromagnetic wave absorption in graphene nanoribbon nanocomposite foam by multiscale electron dissipation of atomic defects, interfacial polarization and impedance match [J]. Carbon, 2023, 205: 159
30 Ma Y, Wang H, Ni Z Q, et al. Synergistic effect of carbon nanotubes with zinc oxide nanowires for enhanced electromagnetic shielding performance of hybrid carbon fiber/epoxy composites [J]. Chin. J. Mater. Res., 2024, 38: 61
doi: 10.11901/1005.3093.2023.158
马 源, 王 函, 倪忠强 等. 碳纳米管/氧化锌协同增强碳纤维复合材料的电磁屏蔽性能 [J]. 材料研究学报, 2024, 38: 61
31 Li T T, Wang X M, Wang Y T, et al. Silver-coated conductive composite fabric with flexible, anti-flaming for electromagnetic interference shielding [J]. J. Appl. Poly. Sci., 2022, 139: 51875
32 Bi J Y, Sun Z H, Guo Z H, et al. Negative permittivity enhanced reflection and adsorption of electromagnetic waves from carbon fiber felt/carbon nanotubes [J]. J. Mater. Chem., 2024, 12A: 13974
33 Lv Q T, Zhu X Y, Zhou T Y, et al. Multifunctional and recyclable aerogel/fiber building insulation composites with sandwich structure [J]. Const. Build. Mater., 2024, 423: 135902
34 Huang M R, Huang Y, Yang H, et al. Ti3C2T x MXene/Fe3O4/carbon fiber fabric/water polyurethane composite fabrics for electromagnetic interference shielding and thermal management [J]. ACS Appl. Nano Mater., 2024, 7: 14921
35 Duan N M, Shi Z Y, Wang J L, et al. Multilayer-structured carbon fiber fabric/graphene oxide/Fe3O4/epoxy composite for highly efficient mechanical and electromagnetic interference shielding [J]. Appl. Surf. Sci., 2023, 613: 156038
[1] LI Qingpeng, LIU Jiaxing, AN Xiaoyun, LI Yongzhi, GAO Meng, SUN Hongtao, WANG Na. Preparation and Properties of High Performance Silane Conversion Film on Electroplated Zinc Surface[J]. 材料研究学报, 2025, 39(4): 296-304.
[2] LI Ying, NIE Xuetong, QIAN Liguo, ZHU Yiren. Synthesis of Co3O4/ZnO@MG-C3Nx Catalysts and Their Visible Light Degradation of Methylene Blue Performance[J]. 材料研究学报, 2025, 39(4): 241-250.
[3] ZHANG Senhan, WANG Huan, ZHANG Jiakang, FENG Xiaoqian, ZHANG Qijian, ZHAO Yonghua. Alkali-modified HZSM-5 Zeolite/Cu-ZnO-Al2O3 Bifunctional Catalyst for Hydrogen Production via Steam Reforming of Dimethyl Ether[J]. 材料研究学报, 2025, 39(4): 251-258.
[4] TANG Chen, ZHANG Yaozong, WANG Yifan, LIU Chao, ZHAO Derun, DONG Penghao. Preparation of α-Fe2O3/TiO2 Photocatalytic Material and Its Performance for Phenol Degradation[J]. 材料研究学报, 2025, 39(3): 233-240.
[5] BAO Xiukun, SHI Guimei. Preparation and Microwave Absorption Properties of NiCo@C(N)/NC Nanocomposites[J]. 材料研究学报, 2025, 39(2): 126-136.
[6] YU Wenjing, LIU Chunzhong, ZHANG Hongliang, LU Tianni, WANG Dong, LI Na, HUANG Zhenwei. Effect of SiC Content on Microstructure and Corrosion Resistance of Micro-arc Oxidation Film on Composites SiCP/6092 Al-alloy[J]. 材料研究学报, 2025, 39(2): 153-160.
[7] MU Chunhao, CHEN Wenge, YU Tianliang, MA Jiangjiang. Interface Microstructure and Properties of TA2/Q345 Composite Pipes Prepared by Hot Assembling and Diffusion Welding[J]. 材料研究学报, 2025, 39(1): 35-43.
[8] HAN Heng, LI Hongqiao, LI Peng, MA Guozheng, GUO Weiling, LIU Ming. Effect of Cold Spraying Temperature on Structure and Tribological Properties of Ni-Ti3AlC2 Composite Coating[J]. 材料研究学报, 2025, 39(1): 44-54.
[9] CUI Sikai, FU Guangyan, LIN Lihai, YAN Yukun, LI Chusen. Preparation Process and Reaction Mechanism of Silicon Carbide Absorbing Materials by In-situ Reaction Method at High Temperature[J]. 材料研究学报, 2024, 38(9): 659-668.
[10] HUANG Wenzhan, CHEN Yao, CHEN Peng, ZHANG Yujie, CHEN Xingyu. Stability of Pore Structure of ZL102 Al-alloy Foam Prepared by Secondary Foaming Method[J]. 材料研究学报, 2024, 38(8): 605-613.
[11] TAN Shangrong, YAO Zhuo, LIU Zechen, JIANG Yilei, GUO Shiqi, LI Lili. Fabrication and Performance of Metal Organic Framework Zn-BTC/rGO Nanocomposites[J]. 材料研究学报, 2024, 38(8): 576-584.
[12] HAO Ziheng, ZHENG Liumenghan, ZHANG Ni, JIANG Entong, WANG Guozheng, YANG Jikai. Color-changing Performance of Electrochromic Devices Based on WO3/Pt-NiO Electrodes[J]. 材料研究学报, 2024, 38(8): 569-575.
[13] ZHANG Hengyu, HUANG Zhaodan, DUAN Tigang, WEN Qing, LI Ruocan, WU Houran, MA Li, ZHANG Haibing. Electrocatalytic Oxygen Reduction of Carbon-based Hierarchical Pt@Co Composite Catalytic Cathode in Natural Seawater[J]. 材料研究学报, 2024, 38(8): 632-640.
[14] ZHANG Wei, ZHANG Jie. Toughening Mechanism of B4C-Al2O3 Composite Ceramics[J]. 材料研究学报, 2024, 38(8): 614-620.
[15] ZHOU Hui, DU Bin, YANG Pengbin, JIN Dangqin, XIAO Jiali, SHEN Ming, WANG Shengwen. Sodium Gluconate Assisted Synthesis of Nest-like Bi/β-Bi2O3 Heterojunction and Its Visible-light Driven Photocatalytic Activities[J]. 材料研究学报, 2024, 38(7): 549-560.
No Suggested Reading articles found!